1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
|
/*
* mboot.c
*
* Loader for Multiboot-compliant kernels and modules.
*
* Copyright (C) 2005 Tim Deegan <Tim.Deegan@cl.cam.ac.uk>
* Parts based on GNU GRUB, Copyright 2000 Free Software Foundation, Inc.
* Parts based on SYSLINUX, Copyright 1994-2008 H. Peter Anvin.
* Thanks to Ram Yalamanchili for the ELF section-header loading.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include <console.h>
#include <zlib.h>
#include <com32.h>
#include "i386-elf.h"
#include "mb_info.h"
#include "mb_header.h"
#include <klibc/compiler.h> /* For __constructor */
#define MIN(_x, _y) (((_x)<(_y))?(_x):(_y))
#define MAX(_x, _y) (((_x)>(_y))?(_x):(_y))
/* Define this for some more printout */
#undef DEBUG
/* Memory magic numbers */
#define STACK_SIZE 0x20000 /* XXX Could be much smaller */
#define MALLOC_SIZE 0x100000 /* XXX Could be much smaller */
#define MIN_RUN_ADDR 0x10000 /* Lowest address we'll consider using */
#define MEM_HOLE_START 0xa0000 /* Memory hole runs from 640k ... */
#define MEM_HOLE_END 0x100000 /* ... to 1MB */
#define X86_PAGE_SIZE 0x1000
size_t __stack_size = STACK_SIZE; /* How much stack we'll use */
extern void *__mem_end; /* Start of malloc() heap */
extern char _end[]; /* End of static data */
/* Pointer to free memory for loading into: load area is between here
* and section_addr */
static char *next_load_addr;
/* Memory map for run-time */
typedef struct section section_t;
struct section {
size_t dest; /* Start of run-time allocation */
char *src; /* Current location of data for memmove(),
* or NULL for bzero() */
size_t size; /* Length of allocation */
};
static char *section_addr;
static int section_count;
static size_t max_run_addr; /* Highest address we'll consider using */
static size_t next_mod_run_addr; /* Where the next module will be put */
/* File loads are in units of this much */
#define LOAD_CHUNK 0x20000
/* Layout of the input to the 32-bit lidt instruction */
struct lidt_operand {
unsigned int limit:16;
unsigned int base:32;
} __attribute__((packed));
/* Magic strings */
static const char version_string[] = "COM32 Multiboot loader v0.2";
static const char copyright_string[] = "Copyright (C) 2005-2006 Tim Deegan.";
static const char module_separator[] = "---";
/*
* Start of day magic, run from __start during library init.
*/
static void __constructor check_version(void)
/* Check the SYSLINUX version. Docs say we should be OK from v2.08,
* but in fact we crash on anything below v2.12 (when libc came in). */
{
com32sys_t regs_in, regs_out;
const char *p, *too_old = "Fatal: SYSLINUX image is too old; "
"mboot.c32 needs at least version 2.12.\r\n";
memset(®s_in, 0, sizeof(regs_in));
regs_in.eax.l = 0x0001; /* "Get version" */
__intcall(0x22, ®s_in, ®s_out);
if (regs_out.ecx.w[0] >= 0x020c) return;
/* Pointless: on older versions this print fails too. :( */
for (p = too_old ; *p ; p++) {
memset(®s_in, 0, sizeof(regs_in));
regs_in.eax.b[1] = 0x02; /* "Write character" */
regs_in.edx.b[0] = *p;
__intcall(0x21, ®s_in, ®s_out);
}
__intcall(0x20, ®s_in, ®s_out); /* "Terminate program" */
}
static void __constructor grab_memory(void)
/* Runs before init_memory_arena() (com32/lib/malloc.c) to let
* the malloc() code know how much space it's allowed to use.
* We don't use malloc() directly, but some of the library code
* does (zlib, for example). */
{
/* Find the stack pointer */
register char * sp;
asm volatile("movl %%esp, %0" : "=r" (sp));
/* Initialize the allocation of *run-time* memory: don't let ourselves
* overwrite the stack during the relocation later. */
max_run_addr = (size_t) sp - (MALLOC_SIZE + STACK_SIZE);
/* Move the end-of-memory marker: malloc() will use only memory
* above __mem_end and below the stack. We will load files starting
* at the old __mem_end and working towards the new one, and allocate
* section descriptors at the top of that area, working down. */
next_load_addr = __mem_end;
section_addr = sp - (MALLOC_SIZE + STACK_SIZE);
section_count = 0;
/* But be careful not to move it the wrong direction if memory is
* tight. Instead we'll fail more gracefully later, when we try to
* load a file and find that next_load_addr > section_addr. */
__mem_end = MAX(section_addr, next_load_addr);
}
/*
* Run-time memory map functions: allocating and recording allocations.
*/
static int cmp_sections(const void *a, const void *b)
/* For sorting section descriptors by destination address */
{
const section_t *sa = a;
const section_t *sb = b;
if (sa->dest < sb->dest) return -1;
if (sa->dest > sb->dest) return 1;
return 0;
}
static void add_section(size_t dest, char *src, size_t size)
/* Adds something to the list of sections to relocate. */
{
section_t *sec;
#ifdef DEBUG
printf("SECTION: %#8.8x --> %#8.8x (%#x)\n", (size_t) src, dest, size);
#endif
section_addr -= sizeof (section_t);
if (section_addr < next_load_addr) {
printf("Fatal: out of memory allocating section descriptor.\n");
exit(1);
}
sec = (section_t *) section_addr;
section_count++;
sec->src = src;
sec->dest = dest;
sec->size = size;
/* Keep the list sorted */
qsort(sec, section_count, sizeof (section_t), cmp_sections);
}
static size_t place_low_section(size_t size, size_t align)
/* Find a space in the run-time memory map, below 640K */
{
int i;
size_t start;
section_t *sections = (section_t *) section_addr;
start = MIN_RUN_ADDR;
start = (start + (align-1)) & ~(align-1);
/* Section list is sorted by destination, so can do this in one pass */
for (i = 0; i < section_count; i++) {
if (sections[i].dest < start + size) {
/* Hit the bottom of this section */
start = sections[i].dest + sections[i].size;
start = (start + (align-1)) & ~(align-1);
}
}
if (start + size < MEM_HOLE_START) return start;
else return 0;
}
static size_t place_module_section(size_t size, size_t align)
/* Find a space in the run-time memory map for this module. */
{
/* Ideally we'd run through the sections looking for a free space
* like place_low_section() does, but some OSes (Xen, at least)
* assume that the bootloader has loaded all the modules
* consecutively, above the kernel. So, what we actually do is
* keep a pointer to the highest address allocated so far, and
* always allocate modules there. */
size_t start = next_mod_run_addr;
start = (start + (align-1)) & ~(align-1);
if (start + size > max_run_addr) return 0;
next_mod_run_addr = start + size;
return start;
}
static void place_kernel_section(size_t start, size_t size)
/* Allocate run-time space for part of the kernel, checking for
* sanity. We assume the kernel isn't broken enough to have
* overlapping segments. */
{
/* We always place modules above the kernel */
next_mod_run_addr = MAX(next_mod_run_addr, start + size);
if (start > max_run_addr || start + size > max_run_addr) {
/* Overruns the end of memory */
printf("Fatal: kernel loads too high (%#8.8x+%#x > %#8.8x).\n",
start, size, max_run_addr);
exit(1);
}
if (start >= MEM_HOLE_END) {
/* Above the memory hole: easy */
#ifdef DEBUG
printf("Placed kernel section (%#8.8x+%#x)\n", start, size);
#endif
return;
}
if (start >= MEM_HOLE_START) {
/* In the memory hole. Not so good */
printf("Fatal: kernel load address (%#8.8x) is in the memory hole.\n",
start);
exit(1);
}
if (start + size > MEM_HOLE_START) {
/* Too big for low memory */
printf("Fatal: kernel (%#8.8x+%#x) runs into the memory hole.\n",
start, size);
exit(1);
}
if (start < MIN_RUN_ADDR) {
/* Loads too low */
printf("Fatal: kernel load address (%#8.8x) is too low (<%#8.8x).\n",
start, MIN_RUN_ADDR);
exit(1);
}
/* Kernel loads below the memory hole: OK */
#ifdef DEBUG
printf("Placed kernel section (%#8.8x+%#x)\n", start, size);
#endif
}
static void reorder_sections(void)
/* Reorders sections into a safe order, where no relocation
* overwrites the source of a later one. */
{
section_t *secs = (section_t *) section_addr;
section_t tmp;
int i, j, tries;
#ifdef DEBUG
printf("Relocations:\n");
for (i = 0; i < section_count ; i++) {
printf(" %#8.8x --> %#8.8x (%#x)\n",
(size_t)secs[i].src, secs[i].dest, secs[i].size);
}
#endif
for (i = 0; i < section_count; i++) {
tries = 0;
scan_again:
for (j = i + 1 ; j < section_count; j++) {
if (secs[j].src != NULL
&& secs[i].dest + secs[i].size > (size_t) secs[j].src
&& secs[i].dest < (size_t) secs[j].src + secs[j].size) {
/* Would overwrite the source of the later move */
if (++tries > section_count) {
/* Deadlock! */
/* XXX Try to break deadlocks? */
printf("Fatal: circular dependence in relocations.\n");
exit(1);
}
/* Swap these sections (using struct copies) */
tmp = secs[i]; secs[i] = secs[j]; secs[j] = tmp;
/* Start scanning again from the new secs[i]... */
goto scan_again;
}
}
}
#ifdef DEBUG
printf("Relocations:\n");
for (i = 0; i < section_count ; i++) {
printf(" %#8.8x --> %#8.8x (%#x)\n",
(size_t)secs[i].src, secs[i].dest, secs[i].size);
}
#endif
}
static void init_mmap(struct multiboot_info *mbi)
/* Get a full memory map from the BIOS to pass to the kernel. */
{
com32sys_t regs_in, regs_out;
struct AddrRangeDesc *e820;
int e820_slots;
size_t mem_lower, mem_upper, run_addr, mmap_size;
register size_t sp;
/* Default values for mem_lower and mem_upper in case the BIOS won't
* tell us: 640K, and all memory up to the stack. */
asm volatile("movl %%esp, %0" : "=r" (sp));
mem_upper = (sp - MEM_HOLE_END) / 1024;
mem_lower = (MEM_HOLE_START) / 1024;
#ifdef DEBUG
printf("Requesting memory map from BIOS:\n");
#endif
/* Ask the BIOS for the full memory map of the machine. We'll
* build it in Multiboot format (i.e. with size fields) in the
* bounce buffer, and then allocate some high memory to keep it in
* until boot time. */
e820 = __com32.cs_bounce;
e820_slots = 0;
regs_out.ebx.l = 0;
while(((void *)(e820 + 1)) < __com32.cs_bounce + __com32.cs_bounce_size)
{
memset(e820, 0, sizeof (*e820));
memset(®s_in, 0, sizeof regs_in);
e820->size = sizeof(*e820) - sizeof(e820->size);
/* Ask the BIOS to fill in this descriptor */
regs_in.eax.l = 0xe820; /* "Get system memory map" */
regs_in.ebx.l = regs_out.ebx.l; /* Continuation value from last call */
regs_in.ecx.l = 20; /* Size of buffer to write into */
regs_in.edx.l = 0x534d4150; /* "SMAP" */
regs_in.es = SEG(&e820->BaseAddr);
regs_in.edi.w[0] = OFFS(&e820->BaseAddr);
__intcall(0x15, ®s_in, ®s_out);
if ((regs_out.eflags.l & EFLAGS_CF) != 0 && regs_out.ebx.l != 0)
break; /* End of map */
if (((regs_out.eflags.l & EFLAGS_CF) != 0 && regs_out.ebx.l == 0)
|| (regs_out.eax.l != 0x534d4150))
{
/* Error */
printf("Error %x reading E820 memory map: %s.\n",
(int) regs_out.eax.b[0],
(regs_out.eax.b[0] == 0x80) ? "invalid command" :
(regs_out.eax.b[0] == 0x86) ? "not supported" :
"unknown error");
break;
}
/* Success */
#ifdef DEBUG
printf(" %#16.16Lx -- %#16.16Lx : ",
e820->BaseAddr, e820->BaseAddr + e820->Length);
switch (e820->Type) {
case 1: printf("Available\n"); break;
case 2: printf("Reserved\n"); break;
case 3: printf("ACPI Reclaim\n"); break;
case 4: printf("ACPI NVS\n"); break;
default: printf("? (Reserved)\n"); break;
}
#endif
if (e820->Type == 1) {
if (e820->BaseAddr == 0) {
mem_lower = MIN(MEM_HOLE_START, e820->Length) / 1024;
} else if (e820->BaseAddr == MEM_HOLE_END) {
mem_upper = MIN(0xfff00000, e820->Length) / 1024;
}
}
/* Move to next slot */
e820++;
e820_slots++;
/* Done? */
if (regs_out.ebx.l == 0)
break;
}
/* Record the simple information in the MBI */
mbi->flags |= MB_INFO_MEMORY;
mbi->mem_lower = mem_lower;
mbi->mem_upper = mem_upper;
/* Record the full memory map in the MBI */
if (e820_slots != 0) {
mmap_size = e820_slots * sizeof(*e820);
/* Where will it live at run time? */
run_addr = place_low_section(mmap_size, 1);
if (run_addr == 0) {
printf("Fatal: can't find space for the e820 mmap.\n");
exit(1);
}
/* Where will it live now? */
e820 = (struct AddrRangeDesc *) next_load_addr;
if (next_load_addr + mmap_size > section_addr) {
printf("Fatal: out of memory storing the e820 mmap.\n");
exit(1);
}
next_load_addr += mmap_size;
/* Copy it out of the bounce buffer */
memcpy(e820, __com32.cs_bounce, mmap_size);
/* Remember to copy it again at run time */
add_section(run_addr, (char *) e820, mmap_size);
/* Record it in the MBI */
mbi->flags |= MB_INFO_MEM_MAP;
mbi->mmap_length = mmap_size;
mbi->mmap_addr = run_addr;
}
}
/*
* Code for loading and parsing files.
*/
static void load_file(char *filename, char **startp, size_t *sizep)
/* Load a file into memory. Returns where it is and how big via
* startp and sizep */
{
gzFile fp;
char *start;
int bsize;
printf("Loading %s.", filename);
start = next_load_addr;
startp[0] = start;
sizep[0] = 0;
/* Open the file */
if ((fp = gzopen(filename, "r")) == NULL) {
printf("\nFatal: cannot open %s\n", filename);
exit(1);
}
while (next_load_addr + LOAD_CHUNK <= section_addr) {
bsize = gzread(fp, next_load_addr, LOAD_CHUNK);
printf("%s",".");
if (bsize < 0) {
printf("\nFatal: read error in %s\n", filename);
gzclose(fp);
exit(1);
}
next_load_addr += bsize;
sizep[0] += bsize;
if (bsize < LOAD_CHUNK) {
printf("%s","\n");
gzclose(fp);
return;
}
}
/* Running out of memory. Try and use up the last bit */
if (section_addr > next_load_addr) {
bsize = gzread(fp, next_load_addr, section_addr - next_load_addr);
printf("%s",".");
} else {
bsize = 0;
}
if (bsize < 0) {
gzclose(fp);
printf("\nFatal: read error in %s\n", filename);
exit(1);
}
next_load_addr += bsize;
sizep[0] += bsize;
if (!gzeof(fp)) {
gzclose(fp);
printf("\nFatal: out of memory reading %s\n", filename);
exit(1);
}
printf("%s","\n");
gzclose(fp);
return;
}
static size_t load_kernel(struct multiboot_info *mbi, char *cmdline)
/* Load a multiboot/elf32 kernel and allocate run-time memory for it.
* Returns the kernel's entry address. */
{
unsigned int i;
char *load_addr; /* Where the image was loaded */
size_t load_size; /* How big it is */
char *seg_addr; /* Where a segment was loaded */
size_t seg_size, bss_size; /* How big it is */
size_t run_addr, run_size; /* Where it should be put */
size_t shdr_run_addr;
char *p;
Elf32_Ehdr *ehdr;
Elf32_Phdr *phdr;
Elf32_Shdr *shdr;
struct multiboot_header *mbh;
printf("Kernel: %s\n", cmdline);
load_addr = 0;
load_size = 0;
p = strchr(cmdline, ' ');
if (p != NULL) *p = 0;
load_file(cmdline, &load_addr, &load_size);
if (load_size < 12) {
printf("Fatal: %s is too short to be a multiboot kernel.",
cmdline);
exit(1);
}
if (p != NULL) *p = ' ';
/* Look for a multiboot header in the first 8k of the file */
for (i = 0; i <= MIN(load_size - 12, MULTIBOOT_SEARCH - 12); i += 4)
{
mbh = (struct multiboot_header *)(load_addr + i);
if (mbh->magic != MULTIBOOT_MAGIC
|| ((mbh->magic+mbh->flags+mbh->checksum) & 0xffffffff))
{
/* Not a multiboot header */
continue;
}
if (mbh->flags & (MULTIBOOT_UNSUPPORTED | MULTIBOOT_VIDEO_MODE)) {
/* Requires options we don't support */
printf("Fatal: Kernel requires multiboot options "
"that I don't support: %#x.\n",
mbh->flags & (MULTIBOOT_UNSUPPORTED|MULTIBOOT_VIDEO_MODE));
exit(1);
}
/* This kernel will do: figure out where all the pieces will live */
if (mbh->flags & MULTIBOOT_AOUT_KLUDGE) {
/* Use the offsets in the multiboot header */
#ifdef DEBUG
printf("Using multiboot header.\n");
#endif
/* Where is the code in the loaded file? */
seg_addr = ((char *)mbh) - (mbh->header_addr - mbh->load_addr);
/* How much code is there? */
run_addr = mbh->load_addr;
if (mbh->load_end_addr != 0)
seg_size = mbh->load_end_addr - mbh->load_addr;
else
seg_size = load_size - (seg_addr - load_addr);
/* How much memory will it take up? */
if (mbh->bss_end_addr != 0)
run_size = mbh->bss_end_addr - mbh->load_addr;
else
run_size = seg_size;
if (seg_size > run_size) {
printf("Fatal: can't put %i bytes of kernel into %i bytes "
"of memory.\n", seg_size, run_size);
exit(1);
}
if (seg_addr + seg_size > load_addr + load_size) {
printf("Fatal: multiboot load segment runs off the "
"end of the file.\n");
exit(1);
}
/* Does it fit where it wants to be? */
place_kernel_section(run_addr, run_size);
/* Put it on the relocation list */
if (seg_size < run_size) {
/* Set up the kernel BSS too */
if (seg_size > 0)
add_section(run_addr, seg_addr, seg_size);
bss_size = run_size - seg_size;
add_section(run_addr + seg_size, NULL, bss_size);
} else {
/* No BSS */
add_section(run_addr, seg_addr, run_size);
}
/* Done. */
return mbh->entry_addr;
} else {
/* Now look for an ELF32 header */
ehdr = (Elf32_Ehdr *)load_addr;
if (*(unsigned long *)ehdr != 0x464c457f
|| ehdr->e_ident[EI_DATA] != ELFDATA2LSB
|| ehdr->e_ident[EI_CLASS] != ELFCLASS32
|| ehdr->e_machine != EM_386)
{
printf("Fatal: kernel has neither ELF32/x86 nor multiboot load"
" headers.\n");
exit(1);
}
if (ehdr->e_phoff + ehdr->e_phnum*sizeof (*phdr) > load_size) {
printf("Fatal: malformed ELF header overruns EOF.\n");
exit(1);
}
if (ehdr->e_phnum <= 0) {
printf("Fatal: ELF kernel has no program headers.\n");
exit(1);
}
#ifdef DEBUG
printf("Using ELF header.\n");
#endif
if (ehdr->e_type != ET_EXEC
|| ehdr->e_version != EV_CURRENT
|| ehdr->e_phentsize != sizeof (Elf32_Phdr)) {
printf("Warning: funny-looking ELF header.\n");
}
phdr = (Elf32_Phdr *)(load_addr + ehdr->e_phoff);
/* Obey the program headers to load the kernel */
for(i = 0; i < ehdr->e_phnum; i++) {
/* How much is in this segment? */
run_size = phdr[i].p_memsz;
if (phdr[i].p_type != PT_LOAD)
seg_size = 0;
else
seg_size = (size_t)phdr[i].p_filesz;
/* Where is it in the loaded file? */
seg_addr = load_addr + phdr[i].p_offset;
if (seg_addr + seg_size > load_addr + load_size) {
printf("Fatal: ELF load segment runs off the "
"end of the file.\n");
exit(1);
}
/* Skip segments that don't take up any memory */
if (run_size == 0) continue;
/* Place the segment where it wants to be */
run_addr = phdr[i].p_paddr;
place_kernel_section(run_addr, run_size);
/* Put it on the relocation list */
if (seg_size < run_size) {
/* Set up the kernel BSS too */
if (seg_size > 0)
add_section(run_addr, seg_addr, seg_size);
bss_size = run_size - seg_size;
add_section(run_addr + seg_size, NULL, bss_size);
} else {
/* No BSS */
add_section(run_addr, seg_addr, run_size);
}
}
if (ehdr->e_shoff != 0) {
#ifdef DEBUG
printf("Loading ELF section table.\n");
#endif
/* Section Header */
shdr = (Elf32_Shdr *)(load_addr + ehdr->e_shoff);
/* Section Header Table size */
run_size = ehdr->e_shentsize * ehdr->e_shnum;
shdr_run_addr = place_module_section(run_size, 0x1000);
if (shdr_run_addr == 0) {
printf("Warning: Not enough memory to load the "
"section table.\n");
return ehdr->e_entry;
}
add_section(shdr_run_addr, (void*) shdr, run_size);
/* Load section tables not loaded thru program segments */
for (i = 0; i < ehdr->e_shnum; i++) {
/* This case is when this section is already included in
* program header or it's 0 size, so no need to load */
if (shdr[i].sh_addr != 0 || !shdr[i].sh_size)
continue;
if (shdr[i].sh_addralign == 0)
shdr[i].sh_addralign = 1;
run_addr = place_module_section(shdr[i].sh_size,
shdr[i].sh_addralign);
if (run_addr == 0) {
printf("Warning: Not enough memory to load "
"section %d.\n", i);
return ehdr->e_entry;
}
shdr[i].sh_addr = run_addr;
add_section(run_addr,
(void*) (shdr[i].sh_offset + load_addr),
shdr[i].sh_size);
}
mbi->flags |= MB_INFO_ELF_SHDR;
mbi->syms.e.num = ehdr->e_shnum;
mbi->syms.e.size = ehdr->e_shentsize;
mbi->syms.e.shndx = ehdr->e_shstrndx;
mbi->syms.e.addr = shdr_run_addr;
#ifdef DEBUG
printf("Section information: shnum: %lu, entSize: %lu, "
"shstrndx: %lu, addr: 0x%lx\n",
mbi->syms.e.num, mbi->syms.e.size,
mbi->syms.e.shndx, mbi->syms.e.addr);
#endif
}
/* Done! */
return ehdr->e_entry;
}
}
/* This is not a multiboot kernel */
printf("Fatal: not a multiboot kernel.\n");
exit(1);
}
static void load_module(struct mod_list *mod, char *cmdline)
/* Load a multiboot module and allocate a memory area for it */
{
char *load_addr, *p;
size_t load_size, run_addr;
printf("Module: %s\n", cmdline);
load_addr = 0;
load_size = 0;
p = strchr(cmdline, ' ');
if (p != NULL) *p = 0;
load_file(cmdline, &load_addr, &load_size);
if (p != NULL) *p = ' ';
/* Decide where it's going to live */
run_addr = place_module_section(load_size, X86_PAGE_SIZE);
if (run_addr == 0) {
printf("Fatal: can't find space for this module.\n");
exit(1);
}
add_section(run_addr, load_addr, load_size);
/* Remember where we put it */
mod->mod_start = run_addr;
mod->mod_end = run_addr + load_size;
mod->pad = 0;
#ifdef DEBUG
printf("Placed module (%#8.8x+%#x)\n", run_addr, load_size);
#endif
}
/*
* Code for shuffling sections into place and booting the new kernel
*/
static void trampoline_start(section_t *secs, int sec_count,
size_t mbi_run_addr, size_t entry)
/* Final shuffle-and-boot code. Running on the stack; no external code
* or data can be relied on. */
{
int i;
struct lidt_operand idt;
/* SYSLINUX has set up SS, DS and ES as 32-bit 0--4G data segments,
* but doesn't specify FS and GS. Multiboot wants them all to be
* the same, so we'd better do that before we overwrite the GDT. */
asm volatile("movl %ds, %ecx; movl %ecx, %fs; movl %ecx, %gs");
/* Turn off interrupts */
asm volatile("cli");
/* SYSLINUX has set up an IDT at 0x100000 that does all the
* comboot calls, and we're about to overwrite it. The Multiboot
* spec says that the kernel must set up its own IDT before turning
* on interrupts, but it's still entitled to use BIOS calls, so we'll
* put the IDT back to the BIOS one at the base of memory. */
idt.base = 0;
idt.limit = 0x800;
asm volatile("lidt %0" : : "m" (idt));
/* Now, shuffle the sections */
for (i = 0; i < sec_count; i++) {
if (secs[i].src == NULL) {
/* asm bzero() code from com32/lib/memset.c */
char *q = (char *) secs[i].dest;
size_t nl = secs[i].size >> 2;
asm volatile("rep ; stosl ; movl %3,%0 ; rep ; stosb"
: "+c" (nl), "+D" (q)
: "a" (0x0U), "r" (secs[i].size & 3));
} else {
/* asm memmove() code from com32/lib/memmove.c */
const char *p = secs[i].src;
char *q = (char *) secs[i].dest;
size_t n = secs[i].size;
if ( q < p ) {
asm volatile("rep ; movsb"
: "+c" (n), "+S" (p), "+D" (q));
} else {
p += (n-1);
q += (n-1);
asm volatile("std ; rep ; movsb ; cld"
: "+c" (n), "+S" (p), "+D" (q));
}
}
}
/* Now set up the last tiny bit of Multiboot environment.
* A20 is already enabled.
* CR0 already has PG cleared and PE set.
* EFLAGS already has VM and IF cleared.
* ESP is the kernels' problem.
* GDTR is the kernel's problem.
* CS is already a 32-bit, 0--4G code segments.
* DS, ES, FS and GS are already 32-bit, 0--4G data segments.
*
* EAX must be 0x2badb002 and EBX must point to the MBI when we jump. */
asm volatile ("jmp %*%2"
: : "a" (0x2badb002), "b" (mbi_run_addr), "cdSDm" (entry));
}
static void trampoline_end(void) {}
static void boot(size_t mbi_run_addr, size_t entry)
/* Tidy up SYSLINUX, shuffle memory and boot the kernel */
{
com32sys_t regs;
section_t *tr_sections;
void (*trampoline)(section_t *, int, size_t, size_t);
size_t trampoline_size;
/* Make sure the relocations are safe. */
reorder_sections();
/* Copy the shuffle-and-boot code and the array of relocations
* onto the memory we previously used for malloc() heap. This is
* safe because it's not the source or the destination of any
* copies, and there'll be no more library calls after the copy. */
tr_sections = ((section_t *) section_addr) + section_count;
trampoline = (void *) (tr_sections + section_count);
trampoline_size = (void *)&trampoline_end - (void *)&trampoline_start;
#ifdef DEBUG
printf("tr_sections: %p\n"
"trampoline: %p\n"
"trampoline_size: %#8.8x\n"
"max_run_addr: %#8.8x\n",
tr_sections, trampoline, trampoline_size, max_run_addr);
#endif
printf("Booting: MBI=%#8.8x, entry=%#8.8x\n", mbi_run_addr, entry);
memmove(tr_sections, section_addr, section_count * sizeof (section_t));
memmove(trampoline, trampoline_start, trampoline_size);
/* Tell SYSLINUX to clean up */
memset(®s, 0, sizeof regs);
regs.eax.l = 0x000c; /* "Perform final cleanup" */
regs.edx.l = 0; /* "Normal cleanup" */
__intcall(0x22, ®s, NULL);
/* Into the unknown */
trampoline(tr_sections, section_count, mbi_run_addr, entry);
}
int main(int argc, char **argv)
/* Parse the command-line and invoke loaders */
{
struct multiboot_info *mbi;
struct mod_list *modp;
int modules, num_append_args;
int mbi_reloc_offset;
char *p;
size_t mbi_run_addr, mbi_size, entry;
int i;
/* Say hello */
openconsole(&dev_null_r, &dev_stdcon_w);
printf("%s. %s\n", version_string, copyright_string);
if (argc < 2 || !strcmp(argv[1], module_separator)) {
printf("Fatal: No kernel filename!\n");
exit(1);
}
#ifdef DEBUG
printf("_end: %p\n"
"argv[1]: %p\n"
"next_load_addr: %p\n"
"section_addr %p\n"
"__mem_end: %p\n"
"argv[0]: %p\n",
&_end, argv[1], next_load_addr, section_addr, __mem_end, argv[0]);
#endif
/* How much space will the MBI need? */
modules = 0;
mbi_size = sizeof(struct multiboot_info) + strlen(version_string) + 5;
for (i = 1 ; i < argc ; i++) {
if (!strcmp(argv[i], module_separator)) {
modules++;
mbi_size += sizeof(struct mod_list) + 1;
} else {
mbi_size += strlen(argv[i]) + 1;
}
}
/* Allocate space in the load buffer for the MBI, all the command
* lines, and all the module details. */
mbi = (struct multiboot_info *)next_load_addr;
next_load_addr += mbi_size;
if (next_load_addr > section_addr) {
printf("Fatal: out of memory allocating for boot metadata.\n");
exit(1);
}
memset(mbi, 0, sizeof (struct multiboot_info));
p = (char *)(mbi + 1);
mbi->flags = MB_INFO_CMDLINE | MB_INFO_BOOT_LOADER_NAME;
/* Figure out the memory map.
* N.B. Must happen before place_section() is called */
init_mmap(mbi);
mbi_run_addr = place_low_section(mbi_size, 4);
if (mbi_run_addr == 0) {
printf("Fatal: can't find space for the MBI!\n");
exit(1);
}
mbi_reloc_offset = (size_t)mbi - mbi_run_addr;
add_section(mbi_run_addr, (void *)mbi, mbi_size);
/* Module info structs */
modp = (struct mod_list *) (((size_t)p + 3) & ~3);
if (modules > 0) mbi->flags |= MB_INFO_MODS;
mbi->mods_count = modules;
mbi->mods_addr = ((size_t)modp) - mbi_reloc_offset;
p = (char *)(modp + modules);
/* Append cmdline args show up in the beginning, append these
* to kernel cmdline later on */
for (i = 1; i < argc; i++) {
if (strchr(argv[i], '=') != NULL) {
continue;
}
break;
}
/* Command lines: first kernel, then modules */
mbi->cmdline = ((size_t)p) - mbi_reloc_offset;
modules = 0;
num_append_args = i-1;
for (; i < argc ; i++) {
if (!strcmp(argv[i], module_separator)) {
/* Add append args to kernel cmdline */
if (modules == 0 && num_append_args) {
int j;
for (j = 1; j < num_append_args+1; j++) {
strcpy(p, argv[j]);
p += strlen(argv[j]);
*p++ = ' ';
}
}
*p++ = '\0';
modp[modules++].cmdline = ((size_t)p) - mbi_reloc_offset;
} else {
strcpy(p, argv[i]);
p += strlen(argv[i]);
*p++ = ' ';
}
}
*p++ = '\0';
/* Bootloader ID */
strcpy(p, version_string);
mbi->boot_loader_name = ((size_t)p) - mbi_reloc_offset;
p += strlen(version_string) + 1;
/* Now, do all the loading, and boot it */
entry = load_kernel(mbi, (char *)(mbi->cmdline + mbi_reloc_offset));
for (i=0; i<modules; i++) {
load_module(&(modp[i]), (char *)(modp[i].cmdline + mbi_reloc_offset));
}
boot(mbi_run_addr, entry);
return 1;
}
/*
* EOF
*/
|