1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
|
/* ----------------------------------------------------------------------- *
*
* Copyright 2009 Pierre-Alexandre Meyer
*
* Some parts borrowed from meminfo.c32:
*
* Copyright 2003-2009 H. Peter Anvin - All Rights Reserved
* Copyright 2009 Intel Corporation; author: H. Peter Anvin
*
* Some parts borrowed from Linux:
*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright 2007 rPath, Inc. - All Rights Reserved
* Copyright 2009 Intel Corporation; author H. Peter Anvin
*
* Interrupt list from Ralf Brown (http://www.cs.cmu.edu/~ralf/files.html)
*
* This file is part of Syslinux, and is made available under
* the terms of the GNU General Public License version 2.
*
* ----------------------------------------------------------------------- */
#include <stdint.h>
#include <com32.h>
#include <string.h>
#include <memory.h>
const char *const e820_types[] = {
"usable",
"reserved",
"ACPI reclaim",
"ACPI NVS",
"unusable",
};
struct e820_ext_entry {
struct e820entry std;
uint32_t ext_flags;
} __attribute__ ((packed));
#define SMAP 0x534d4150 /* ASCII "SMAP" */
void get_type(int type, char *type_ptr, int type_ptr_sz)
{
unsigned int real_type = type - 1;
if (real_type < sizeof(e820_types) / sizeof(e820_types[0]))
strlcpy(type_ptr, e820_types[real_type], type_ptr_sz);
}
/**
*INT 15 - newer BIOSes - GET SYSTEM MEMORY MAP
* AX = E820h
* EAX = 0000E820h
* EDX = 534D4150h ('SMAP')
* EBX = continuation value or 00000000h to start at beginning of map
* ECX = size of buffer for result, in bytes (should be >= 20 bytes)
* ES:DI -> buffer for result (see #00581)
*
* Return: CF clear if successful
* EAX = 534D4150h ('SMAP')
* ES:DI buffer filled
* EBX = next offset from which to copy or 00000000h if all done
* ECX = actual length returned in bytes
* CF set on error
* AH = error code (86h) (see #00496 at INT 15/AH=80h)
*
* Notes: originally introduced with the Phoenix BIOS v4.0, this function is
* now supported by most newer BIOSes, since various versions of Windows
* call it to find out about the system memory
* a maximum of 20 bytes will be transferred at one time, even if ECX is
* higher; some BIOSes (e.g. Award Modular BIOS v4.50PG) ignore the
* value of ECX on entry, and always copy 20 bytes
* some BIOSes expect the high word of EAX to be clear on entry, i.e.
* EAX=0000E820h
* if this function is not supported, an application should fall back
* to AX=E802h, AX=E801h, and then AH=88h
* the BIOS is permitted to return a nonzero continuation value in EBX
* and indicate that the end of the list has already been reached by
* returning with CF set on the next iteration
* this function will return base memory and ISA/PCI memory contiguous
* with base memory as normal memory ranges; it will indicate
* chipset-defined address holes which are not in use and motherboard
* memory-mapped devices, and all occurrences of the system BIOS as
* reserved; standard PC address ranges will not be reported
**/
void detect_memory_e820(struct e820entry *desc, int size_map, int *size_found)
{
int count = 0;
static struct e820_ext_entry buf; /* static so it is zeroed */
void *bounce;
com32sys_t ireg, oreg;
memset(&ireg, 0, sizeof ireg);
bounce = lmalloc(sizeof buf);
if (!bounce)
goto out;
ireg.eax.w[0] = 0xe820;
ireg.edx.l = SMAP;
ireg.ecx.l = sizeof(struct e820_ext_entry);
ireg.edi.w[0] = OFFS(bounce);
ireg.es = SEG(bounce);
/*
* Set this here so that if the BIOS doesn't change this field
* but still doesn't change %ecx, we're still okay...
*/
memset(&buf, 0, sizeof buf);
buf.ext_flags = 1;
do {
memcpy(bounce, &buf, sizeof buf);
/* Important: %edx and %esi are clobbered by some BIOSes,
so they must be either used for the error output
or explicitly marked clobbered. Given that, assume there
is something out there clobbering %ebp and %edi, too. */
__intcall(0x15, &ireg, &oreg);
/* Some BIOSes stop returning SMAP in the middle of
the search loop. We don't know exactly how the BIOS
screwed up the map at that point, we might have a
partial map, the full map, or complete garbage, so
just return failure. */
if (oreg.eax.l != SMAP) {
count = 0;
break;
}
if (oreg.eflags.l & EFLAGS_CF || oreg.ecx.l < 20)
break;
memcpy(&buf, bounce, sizeof buf);
/*
* ACPI 3.0 added the extended flags support. If bit 0
* in the extended flags is zero, we're supposed to simply
* ignore the entry -- a backwards incompatible change!
*/
if (oreg.ecx.l > 20 && !(buf.ext_flags & 1))
continue;
memcpy(&desc[count], &buf, sizeof buf);
count++;
/* Set continuation value */
ireg.ebx.l = oreg.ebx.l;
} while (ireg.ebx.l && count < size_map);
out:
lfree(bounce);
*size_found = count;
}
/**
* detect_memory_e801
*
*INT 15 - Phoenix BIOS v4.0 - GET MEMORY SIZE FOR >64M CONFIGURATIONS
* AX = E801h
*
* Return: CF clear if successful
* AX = extended memory between 1M and 16M, in K (max 3C00h = 15MB)
* BX = extended memory above 16M, in 64K blocks
* CX = configured memory 1M to 16M, in K
* DX = configured memory above 16M, in 64K blocks
* CF set on error
*
* Notes: supported by the A03 level (6/14/94) and later XPS P90 BIOSes, as well
* as the Compaq Contura, 3/8/93 DESKPRO/i, and 7/26/93 LTE Lite 386 ROM
* BIOS
* supported by AMI BIOSes dated 8/23/94 or later
* on some systems, the BIOS returns AX=BX=0000h; in this case, use CX
* and DX instead of AX and BX
* this interface is used by Windows NT 3.1, OS/2 v2.11/2.20, and is
* used as a fall-back by newer versions if AX=E820h is not supported
* this function is not used by MS-DOS 6.0 HIMEM.SYS when an EISA machine
* (for example with parameter /EISA) (see also MEM F000h:FFD9h), or no
* Compaq machine was detected, or parameter /NOABOVE16 was given.
**/
int detect_memory_e801(int *mem_size_below_16, int *mem_size_above_16)
{
com32sys_t ireg, oreg;
memset(&ireg, 0, sizeof ireg);
ireg.eax.w[0] = 0xe801;
__intcall(0x15, &ireg, &oreg);
if (oreg.eflags.l & EFLAGS_CF)
return -1;
if (oreg.eax.w[0] > 0x3c00)
return -1; /* Bogus! */
/* Linux seems to use ecx and edx by default if they are defined */
if (oreg.eax.w[0] || oreg.eax.w[0]) {
oreg.eax.w[0] = oreg.ecx.w[0];
oreg.ebx.w[0] = oreg.edx.w[0];
}
*mem_size_below_16 = oreg.eax.w[0]; /* 1K blocks */
*mem_size_above_16 = oreg.ebx.w[0]; /* 64K blocks */
return 0;
}
int detect_memory_88(int *mem_size)
{
com32sys_t ireg, oreg;
memset(&ireg, 0, sizeof ireg);
ireg.eax.w[0] = 0x8800;
__intcall(0x15, &ireg, &oreg);
if (oreg.eflags.l & EFLAGS_CF)
return -1;
*mem_size = oreg.eax.w[0];
return 0;
}
/*
* Sanitize the BIOS e820 map.
*
* This code come from the memtest86 project. It have been adjusted to match
* the syslinux environement.
* Some e820 responses include overlapping entries. The following
* replaces the original e820 map with a new one, removing overlaps.
*
* The following stuff could be merge once the addr_t will be set to 64bits.
* syslinux_scan_memory can be used for that purpose
*/
int sanitize_e820_map(struct e820entry *orig_map, struct e820entry *new_bios,
short old_nr)
{
struct change_member {
struct e820entry *pbios; /* pointer to original bios entry */
unsigned long long addr; /* address for this change point */
};
struct change_member change_point_list[2 * E820MAX];
struct change_member *change_point[2 * E820MAX];
struct e820entry *overlap_list[E820MAX];
struct e820entry biosmap[E820MAX];
struct change_member *change_tmp;
unsigned long current_type, last_type;
unsigned long long last_addr;
int chgidx, still_changing;
int overlap_entries;
int new_bios_entry;
int i;
/*
Visually we're performing the following (1,2,3,4 = memory types)...
Sample memory map (w/overlaps):
____22__________________
______________________4_
____1111________________
_44_____________________
11111111________________
____________________33__
___________44___________
__________33333_________
______________22________
___________________2222_
_________111111111______
_____________________11_
_________________4______
Sanitized equivalent (no overlap):
1_______________________
_44_____________________
___1____________________
____22__________________
______11________________
_________1______________
__________3_____________
___________44___________
_____________33_________
_______________2________
________________1_______
_________________4______
___________________2____
____________________33__
______________________4_
*/
/* First make a copy of the map */
for (i = 0; i < old_nr; i++) {
biosmap[i].addr = orig_map[i].addr;
biosmap[i].size = orig_map[i].size;
biosmap[i].type = orig_map[i].type;
}
/* bail out if we find any unreasonable addresses in bios map */
for (i = 0; i < old_nr; i++) {
if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
return 0;
}
/* create pointers for initial change-point information (for sorting) */
for (i = 0; i < 2 * old_nr; i++)
change_point[i] = &change_point_list[i];
/* record all known change-points (starting and ending addresses) */
chgidx = 0;
for (i = 0; i < old_nr; i++) {
change_point[chgidx]->addr = biosmap[i].addr;
change_point[chgidx++]->pbios = &biosmap[i];
change_point[chgidx]->addr = biosmap[i].addr + biosmap[i].size;
change_point[chgidx++]->pbios = &biosmap[i];
}
/* sort change-point list by memory addresses (low -> high) */
still_changing = 1;
while (still_changing) {
still_changing = 0;
for (i = 1; i < 2 * old_nr; i++) {
/* if <current_addr> > <last_addr>, swap */
/* or, if current=<start_addr> & last=<end_addr>, swap */
if ((change_point[i]->addr < change_point[i - 1]->addr) ||
((change_point[i]->addr == change_point[i - 1]->addr) &&
(change_point[i]->addr == change_point[i]->pbios->addr) &&
(change_point[i - 1]->addr !=
change_point[i - 1]->pbios->addr))
) {
change_tmp = change_point[i];
change_point[i] = change_point[i - 1];
change_point[i - 1] = change_tmp;
still_changing = 1;
}
}
}
/* create a new bios memory map, removing overlaps */
overlap_entries = 0; /* number of entries in the overlap table */
new_bios_entry = 0; /* index for creating new bios map entries */
last_type = 0; /* start with undefined memory type */
last_addr = 0; /* start with 0 as last starting address */
/* loop through change-points, determining affect on the new bios map */
for (chgidx = 0; chgidx < 2 * old_nr; chgidx++) {
/* keep track of all overlapping bios entries */
if (change_point[chgidx]->addr == change_point[chgidx]->pbios->addr) {
/* add map entry to overlap list (> 1 entry implies an overlap) */
overlap_list[overlap_entries++] = change_point[chgidx]->pbios;
} else {
/* remove entry from list (order independent, so swap with last) */
for (i = 0; i < overlap_entries; i++) {
if (overlap_list[i] == change_point[chgidx]->pbios)
overlap_list[i] = overlap_list[overlap_entries - 1];
}
overlap_entries--;
}
/* if there are overlapping entries, decide which "type" to use */
/* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
current_type = 0;
for (i = 0; i < overlap_entries; i++)
if (overlap_list[i]->type > current_type)
current_type = overlap_list[i]->type;
/* continue building up new bios map based on this information */
if (current_type != last_type) {
if (last_type != 0) {
new_bios[new_bios_entry].size =
change_point[chgidx]->addr - last_addr;
/* move forward only if the new size was non-zero */
if (new_bios[new_bios_entry].size != 0)
if (++new_bios_entry >= E820MAX)
break; /* no more space left for new bios entries */
}
if (current_type != 0) {
new_bios[new_bios_entry].addr = change_point[chgidx]->addr;
new_bios[new_bios_entry].type = current_type;
last_addr = change_point[chgidx]->addr;
}
last_type = current_type;
}
}
return (new_bios_entry);
}
/* The following stuff could be merge once the addr_t will be set to 64bits.
* syslinux_scan_memory can be used for that purpose */
unsigned long detect_memsize(void)
{
unsigned long memory_size = 0;
/* Try to detect memory via e820 */
struct e820entry map[E820MAX];
int count = 0;
detect_memory_e820(map, E820MAX, &count);
memory_size = memsize_e820(map, count);
if (memory_size > 0)
return memory_size;
/*e820 failed, let's try e801 */
int mem_low, mem_high = 0;
if (!detect_memory_e801(&mem_low, &mem_high))
return mem_low + (mem_high << 6);
/*e801 failed, let's try e88 */
int mem_size = 0;
if (!detect_memory_88(&mem_size))
return mem_size;
/* We were enable to detect any kind of memory */
return 0;
}
/* The following stuff could be merge once the addr_t will be set to 64bits.
* syslinux_scan_memory can be used for that purpose */
unsigned long memsize_e820(struct e820entry *e820, int e820_nr)
{
int i, n, nr;
unsigned long memory_size = 0;
struct e820entry nm[E820MAX];
/* Clean up, adjust and copy the BIOS-supplied E820-map. */
nr = sanitize_e820_map(e820, nm, e820_nr);
/* If there is not a good 820 map returning 0 to indicate
that we don't have any idea of the amount of ram we have */
if (nr < 1 || nr > E820MAX) {
return 0;
}
/* Build the memory map for testing */
n = 0;
for (i = 0; i < nr; i++) {
if (nm[i].type == E820_RAM || nm[i].type == E820_ACPI) {
unsigned long long start;
unsigned long long end;
start = nm[i].addr;
end = start + nm[i].size;
/* Don't ever use memory between 640 and 1024k */
if (start > RES_START && start < RES_END) {
if (end < RES_END) {
continue;
}
start = RES_END;
}
if (end > RES_START && end < RES_END) {
end = RES_START;
}
memory_size += (end >> 12) - ((start + 4095) >> 12);
n++;
} else if (nm[i].type == E820_NVS) {
memory_size += nm[i].size >> 12;
}
}
return memory_size * 4;
}
|