1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
/*
* elf_module.c
*
* Created on: Aug 11, 2008
* Author: Stefan Bucur <stefanb@zytor.com>
*/
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <elf.h>
#include <dprintf.h>
#include <core.h>
#include <linux/list.h>
#include <sys/module.h>
#include <sys/exec.h>
#include "elfutils.h"
#include "../common.h"
/*
*
* The implementation assumes that the loadable segments are present
* in the PHT sorted by their offsets, so that only forward seeks would
* be necessary.
*/
int load_segments(struct elf_module *module, Elf_Ehdr *elf_hdr) {
int i;
int res = 0;
char *pht = NULL;
char *sht = NULL;
Elf32_Phdr *cr_pht;
Elf32_Shdr *cr_sht;
Elf32_Addr min_addr = 0x00000000; // Min. ELF vaddr
Elf32_Addr max_addr = 0x00000000; // Max. ELF vaddr
Elf32_Word max_align = sizeof(void*); // Min. align of posix_memalign()
Elf32_Addr min_alloc, max_alloc; // Min. and max. aligned allocables
Elf32_Addr dyn_addr = 0x00000000;
// Get to the PHT
image_seek(elf_hdr->e_phoff, module);
// Load the PHT
pht = malloc(elf_hdr->e_phnum * elf_hdr->e_phentsize);
if (!pht)
return -1;
image_read(pht, elf_hdr->e_phnum * elf_hdr->e_phentsize, module);
// Compute the memory needings of the module
for (i=0; i < elf_hdr->e_phnum; i++) {
cr_pht = (Elf32_Phdr*)(pht + i * elf_hdr->e_phentsize);
switch (cr_pht->p_type) {
case PT_LOAD:
if (i == 0) {
min_addr = cr_pht->p_vaddr;
} else {
min_addr = MIN(min_addr, cr_pht->p_vaddr);
}
max_addr = MAX(max_addr, cr_pht->p_vaddr + cr_pht->p_memsz);
max_align = MAX(max_align, cr_pht->p_align);
break;
case PT_DYNAMIC:
dyn_addr = cr_pht->p_vaddr;
break;
default:
// Unsupported - ignore
break;
}
}
if (max_addr - min_addr == 0) {
// No loadable segments
DBG_PRINT("No loadable segments found\n");
goto out;
}
if (dyn_addr == 0) {
DBG_PRINT("No dynamic information segment found\n");
goto out;
}
// The minimum address that should be allocated
min_alloc = min_addr - (min_addr % max_align);
// The maximum address that should be allocated
max_alloc = max_addr - (max_addr % max_align);
if (max_addr % max_align > 0)
max_alloc += max_align;
if (elf_malloc(&module->module_addr,
max_align,
max_alloc-min_alloc) != 0) {
DBG_PRINT("Could not allocate segments\n");
goto out;
}
module->base_addr = (Elf32_Addr)(module->module_addr) - min_alloc;
module->module_size = max_alloc - min_alloc;
// Zero-initialize the memory
memset(module->module_addr, 0, module->module_size);
for (i = 0; i < elf_hdr->e_phnum; i++) {
cr_pht = (Elf32_Phdr*)(pht + i * elf_hdr->e_phentsize);
if (cr_pht->p_type == PT_LOAD) {
// Copy the segment at its destination
if (cr_pht->p_offset < module->u.l._cr_offset) {
// The segment contains data before the current offset
// It can be discarded without worry - it would contain only
// headers
Elf32_Off aux_off = module->u.l._cr_offset - cr_pht->p_offset;
if (image_read((char *)module_get_absolute(cr_pht->p_vaddr, module) + aux_off,
cr_pht->p_filesz - aux_off, module) < 0) {
res = -1;
goto out;
}
} else {
if (image_seek(cr_pht->p_offset, module) < 0) {
res = -1;
goto out;
}
if (image_read(module_get_absolute(cr_pht->p_vaddr, module),
cr_pht->p_filesz, module) < 0) {
res = -1;
goto out;
}
}
/*
DBG_PRINT("Loadable segment of size 0x%08x copied from vaddr 0x%08x at 0x%08x\n",
cr_pht->p_filesz,
cr_pht->p_vaddr,
(Elf32_Addr)module_get_absolute(cr_pht->p_vaddr, module));
*/
}
}
// Get to the SHT
image_seek(elf_hdr->e_shoff, module);
// Load the SHT
sht = malloc(elf_hdr->e_shnum * elf_hdr->e_shentsize);
if (!sht) {
res = -1;
goto out;
}
image_read(sht, elf_hdr->e_shnum * elf_hdr->e_shentsize, module);
// Setup the symtable size
for (i = 0; i < elf_hdr->e_shnum; i++) {
cr_sht = (Elf32_Shdr*)(sht + i * elf_hdr->e_shentsize);
if (cr_sht->sh_type == SHT_DYNSYM) {
module->symtable_size = cr_sht->sh_size;
break;
}
}
free(sht);
// Setup dynamic segment location
module->dyn_table = module_get_absolute(dyn_addr, module);
/*
DBG_PRINT("Base address: 0x%08x, aligned at 0x%08x\n", module->base_addr,
max_align);
DBG_PRINT("Module size: 0x%08x\n", module->module_size);
*/
out:
// Free up allocated memory
if (pht != NULL)
free(pht);
return res;
}
int perform_relocation(struct elf_module *module, Elf_Rel *rel) {
Elf32_Word *dest = module_get_absolute(rel->r_offset, module);
// The symbol reference index
Elf32_Word sym = ELF32_R_SYM(rel->r_info);
unsigned char type = ELF32_R_TYPE(rel->r_info);
// The symbol definition (if applicable)
Elf32_Sym *sym_def = NULL;
struct elf_module *sym_module = NULL;
Elf32_Addr sym_addr = 0x0;
if (sym > 0) {
// Find out details about the symbol
// The symbol reference
Elf32_Sym *sym_ref = symbol_get_entry(module, sym);
// The symbol definition
sym_def =
global_find_symbol(module->str_table + sym_ref->st_name,
&sym_module);
if (sym_def == NULL) {
DBG_PRINT("Cannot perform relocation for symbol %s\n",
module->str_table + sym_ref->st_name);
if (ELF32_ST_BIND(sym_ref->st_info) != STB_WEAK)
return -1;
// This must be a derivative-specific
// function. We're OK as long as we never
// execute the function.
sym_def = global_find_symbol("undefined_symbol", &sym_module);
}
// Compute the absolute symbol virtual address
sym_addr = (Elf32_Addr)module_get_absolute(sym_def->st_value, sym_module);
if (sym_module != module) {
// Create a dependency
enforce_dependency(sym_module, module);
}
}
switch (type) {
case R_386_NONE:
// Do nothing
break;
case R_386_32:
*dest += sym_addr;
break;
case R_386_PC32:
*dest += sym_addr - (Elf32_Addr)dest;
break;
case R_386_COPY:
if (sym_addr > 0) {
memcpy((void*)dest, (void*)sym_addr, sym_def->st_size);
}
break;
case R_386_GLOB_DAT:
case R_386_JMP_SLOT:
// Maybe TODO: Keep track of the GOT entries allocations
*dest = sym_addr;
break;
case R_386_RELATIVE:
*dest += module->base_addr;
break;
default:
DBG_PRINT("Relocation type %d not supported\n", type);
return -1;
}
return 0;
}
int resolve_symbols(struct elf_module *module) {
Elf32_Dyn *dyn_entry = module->dyn_table;
unsigned int i;
int res;
Elf32_Word plt_rel_size = 0;
char *plt_rel = NULL;
char *rel = NULL;
Elf32_Word rel_size = 0;
Elf32_Word rel_entry = 0;
// The current relocation
Elf32_Rel *crt_rel;
while (dyn_entry->d_tag != DT_NULL) {
switch(dyn_entry->d_tag) {
// PLT relocation information
case DT_PLTRELSZ:
plt_rel_size = dyn_entry->d_un.d_val;
break;
case DT_PLTREL:
if (dyn_entry->d_un.d_val != DT_REL) {
DBG_PRINT("Unsupported PLT relocation\n");
return -1;
}
case DT_JMPREL:
plt_rel = module_get_absolute(dyn_entry->d_un.d_ptr, module);
break;
// Standard relocation information
case DT_REL:
rel = module_get_absolute(dyn_entry->d_un.d_ptr, module);
break;
case DT_RELSZ:
rel_size = dyn_entry->d_un.d_val;
break;
case DT_RELENT:
rel_entry = dyn_entry->d_un.d_val;
break;
// Module initialization and termination
case DT_INIT:
// TODO Implement initialization functions
break;
case DT_FINI:
// TODO Implement finalization functions
break;
}
dyn_entry++;
}
if (rel_size > 0) {
// Process standard relocations
for (i = 0; i < rel_size/rel_entry; i++) {
crt_rel = (Elf32_Rel*)(rel + i*rel_entry);
res = perform_relocation(module, crt_rel);
if (res < 0)
return res;
}
}
if (plt_rel_size > 0) {
// TODO: Permit this lazily
// Process PLT relocations
for (i = 0; i < plt_rel_size/sizeof(Elf32_Rel); i++) {
crt_rel = (Elf32_Rel*)(plt_rel + i*sizeof(Elf32_Rel));
res = perform_relocation(module, crt_rel);
if (res < 0)
return res;
}
}
return 0;
}
|