1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
|
;; -*- fundamental -*-
;; -----------------------------------------------------------------------
;;
;; Copyright 1994-2008 H. Peter Anvin - All Rights Reserved
;; Copyright 2009 Intel Corporation; author: H. Peter Anvin
;;
;; This program is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, Inc., 53 Temple Place Ste 330,
;; Boston MA 02111-1307, USA; either version 2 of the License, or
;; (at your option) any later version; incorporated herein by reference.
;;
;; -----------------------------------------------------------------------
;;
;; init16.asm
;;
;; Routine to initialize and to trampoline into 32-bit
;; protected memory. This code is derived from bcopy32.inc and
;; com32.inc in the main SYSLINUX distribution.
;;
%include '../version.gen'
MY_CS equ 0x0800 ; Segment address to use
CS_BASE equ (MY_CS << 4) ; Corresponding address
; Low memory bounce buffer
BOUNCE_SEG equ (MY_CS+0x1000)
%define DO_WBINVD 0
section .rodata align=16
section .data align=16
section .bss align=16
section .stack align=16 nobits
stack resb 512
stack_end equ $
;; -----------------------------------------------------------------------
;; Kernel image header
;; -----------------------------------------------------------------------
section .text ; Must be first in image
bits 16
cmdline times 497 db 0 ; We put the command line here
setup_sects db 0
root_flags dw 0
syssize dw 0
swap_dev dw 0
ram_size dw 0
vid_mode dw 0
root_dev dw 0
boot_flag dw 0xAA55
_start: jmp short start
db "HdrS" ; Header signature
dw 0x0203 ; Header version number
realmode_swtch dw 0, 0 ; default_switch, SETUPSEG
start_sys_seg dw 0x1000 ; obsolete
version_ptr dw memdisk_version-0x200 ; version string ptr
type_of_loader db 0 ; Filled in by boot loader
loadflags db 1 ; Please load high
setup_move_size dw 0 ; Unused
code32_start dd 0x100000 ; 32-bit start address
ramdisk_image dd 0 ; Loaded ramdisk image address
ramdisk_size dd 0 ; Size of loaded ramdisk
bootsect_kludge dw 0, 0
heap_end_ptr dw 0
pad1 dw 0
cmd_line_ptr dd 0 ; Command line
ramdisk_max dd 0xffffffff ; Highest allowed ramdisk address
;
; These fields aren't real setup fields, they're poked in by the
; 32-bit code.
;
b_esdi dd 0 ; ES:DI for boot sector invocation
b_edx dd 0 ; EDX for boot sector invocation
b_sssp dd 0 ; SS:SP on boot sector invocation
b_csip dd 0 ; CS:IP on boot sector invocation
section .rodata
memdisk_version:
db "MEMDISK ", VERSION_STR, " ", DATE, 0
;; -----------------------------------------------------------------------
;; End kernel image header
;; -----------------------------------------------------------------------
;
; Move ourselves down into memory to reduce the risk of conflicts;
; then canonicalize CS to match the other segments.
;
section .text
bits 16
start:
mov ax,MY_CS
mov es,ax
movzx cx,byte [setup_sects]
inc cx ; Add one for the boot sector
shl cx,7 ; Convert to dwords
xor si,si
xor di,di
mov fs,si ; fs <- 0
cld
rep movsd
mov ds,ax
mov ss,ax
mov esp,stack_end
jmp MY_CS:.next
.next:
;
; Copy the command line, if there is one
;
copy_cmdline:
xor di,di ; Bottom of our own segment (= "boot sector")
mov eax,[cmd_line_ptr]
and eax,eax
jz .endcmd ; No command line
mov si,ax
shr eax,4 ; Convert to segment
and si,0x000F ; Starting offset only
mov gs,ax
mov cx,496 ; Max number of bytes
.copycmd:
gs lodsb
and al,al
jz .endcmd
stosb
loop .copycmd
.endcmd:
xor al,al
stosb
;
; Now jump to 32-bit code
;
sti
call init32
;
; When init32 returns, we have been set up, the new boot sector loaded,
; and we should go and and run the newly loaded boot sector.
;
; The setup function will have poked values into the setup area.
;
movzx edi,word [cs:b_esdi]
mov es,word [cs:b_esdi+2]
mov edx,[cs:b_edx]
cli
xor esi,esi ; No partition table involved
mov ds,si ; Make all the segments consistent
mov fs,si
mov gs,si
lss sp,[cs:b_sssp]
movzx esp,sp
jmp far [cs:b_csip]
;
; We enter protected mode, set up a flat 32-bit environment, run rep movsd
; and then exit. IMPORTANT: This code assumes cs == MY_CS.
;
; This code is probably excessively anal-retentive in its handling of
; segments, but this stuff is painful enough as it is without having to rely
; on everything happening "as it ought to."
;
DummyTSS equ 0x580 ; Hopefully safe place in low mmoery
section .data
; desc base, limit, flags
%macro desc 3
dd (%2 & 0xffff) | ((%1 & 0xffff) << 16)
dd (%1 & 0xff000000) | (%2 & 0xf0000) | ((%3 & 0xf0ff) << 8) | ((%1 & 0x00ff0000) >> 16)
%endmacro
align 8, db 0
call32_gdt: dw call32_gdt_size-1 ; Null descriptor - contains GDT
.adj1: dd call32_gdt+CS_BASE ; pointer for LGDT instruction
dw 0
; 0008: Dummy TSS to make Intel VT happy
; Should never be actually accessed...
desc DummyTSS, 103, 0x8089
; 0010: Code segment, use16, readable, dpl 0, base CS_BASE, 64K
desc CS_BASE, 0xffff, 0x009b
; 0018: Data segment, use16, read/write, dpl 0, base CS_BASE, 64K
desc CS_BASE, 0xffff, 0x0093
; 0020: Code segment, use32, read/write, dpl 0, base 0, 4G
desc 0, 0xfffff, 0xc09b
; 0028: Data segment, use32, read/write, dpl 0, base 0, 4G
desc 0, 0xfffff, 0xc093
call32_gdt_size: equ $-call32_gdt
err_a20: db 'ERROR: A20 gate not responding!',13,10,0
section .bss
alignb 4
Return resd 1 ; Return value
SavedSP resw 1 ; Place to save SP
A20Tries resb 1
section .data
align 4, db 0
Target dd 0 ; Target address
Target_Seg dw 20h ; Target CS
A20Type dw 0 ; Default = unknown
section .text
bits 16
;
; Routines to enable and disable (yuck) A20. These routines are gathered
; from tips from a couple of sources, including the Linux kernel and
; http://www.x86.org/. The need for the delay to be as large as given here
; is indicated by Donnie Barnes of RedHat, the problematic system being an
; IBM ThinkPad 760EL.
;
; We typically toggle A20 twice for every 64K transferred.
;
%define io_delay call _io_delay
%define IO_DELAY_PORT 80h ; Invalid port (we hope!)
%define disable_wait 32 ; How long to wait for a disable
%define A20_DUNNO 0 ; A20 type unknown
%define A20_NONE 1 ; A20 always on?
%define A20_BIOS 2 ; A20 BIOS enable
%define A20_KBC 3 ; A20 through KBC
%define A20_FAST 4 ; A20 through port 92h
align 2, db 0
A20List dw a20_dunno, a20_none, a20_bios, a20_kbc, a20_fast
A20DList dw a20d_dunno, a20d_none, a20d_bios, a20d_kbc, a20d_fast
a20_adjust_cnt equ ($-A20List)/2
slow_out: out dx, al ; Fall through
_io_delay: out IO_DELAY_PORT,al
out IO_DELAY_PORT,al
ret
enable_a20:
pushad
mov byte [A20Tries],255 ; Times to try to make this work
try_enable_a20:
;
; Flush the caches
;
%if DO_WBINVD
call try_wbinvd
%endif
;
; If the A20 type is known, jump straight to type
;
mov bp,[A20Type]
add bp,bp ; Convert to word offset
.adj4: jmp word [bp+A20List]
;
; First, see if we are on a system with no A20 gate
;
a20_dunno:
a20_none:
mov byte [A20Type], A20_NONE
call a20_test
jnz a20_done
;
; Next, try the BIOS (INT 15h AX=2401h)
;
a20_bios:
mov byte [A20Type], A20_BIOS
mov ax,2401h
pushf ; Some BIOSes muck with IF
int 15h
popf
call a20_test
jnz a20_done
;
; Enable the keyboard controller A20 gate
;
a20_kbc:
mov dl, 1 ; Allow early exit
call empty_8042
jnz a20_done ; A20 live, no need to use KBC
mov byte [A20Type], A20_KBC ; Starting KBC command sequence
mov al,0D1h ; Write output port
out 064h, al
call empty_8042_uncond
mov al,0DFh ; A20 on
out 060h, al
call empty_8042_uncond
; Apparently the UHCI spec assumes that A20 toggle
; ends with a null command (assumed to be for sychronization?)
; Put it here to see if it helps anything...
mov al,0FFh ; Null command
out 064h, al
call empty_8042_uncond
; Verify that A20 actually is enabled. Do that by
; observing a word in low memory and the same word in
; the HMA until they are no longer coherent. Note that
; we don't do the same check in the disable case, because
; we don't want to *require* A20 masking (SYSLINUX should
; work fine without it, if the BIOS does.)
.kbc_wait: push cx
xor cx,cx
.kbc_wait_loop:
call a20_test
jnz a20_done_pop
loop .kbc_wait_loop
pop cx
;
; Running out of options here. Final attempt: enable the "fast A20 gate"
;
a20_fast:
mov byte [A20Type], A20_FAST ; Haven't used the KBC yet
in al, 092h
or al,02h
and al,~01h ; Don't accidentally reset the machine!
out 092h, al
.fast_wait: push cx
xor cx,cx
.fast_wait_loop:
call a20_test
jnz a20_done_pop
loop .fast_wait_loop
pop cx
;
; Oh bugger. A20 is not responding. Try frobbing it again; eventually give up
; and report failure to the user.
;
dec byte [A20Tries]
jnz try_enable_a20
; Error message time
mov si,err_a20
print_err:
lodsb
and al,al
jz die
mov bx,7
mov ah,0xe
int 10h
jmp print_err
die:
sti
.hlt: hlt
jmp short .hlt
;
; A20 unmasked, proceed...
;
a20_done_pop: pop cx
a20_done: popad
ret
;
; This routine tests if A20 is enabled (ZF = 0). This routine
; must not destroy any register contents.
;
; This is the INT 1Fh vector, which is standard PCs is used by the
; BIOS when the screen is in graphics mode. Even if it is, it points to
; data, not code, so it should be safe enough to fiddle with.
A20Test equ (1Fh*4)
a20_test:
push ds
push es
push cx
push eax
xor ax,ax
mov ds,ax ; DS == 0
dec ax
mov es,ax ; ES == 0FFFFh
mov cx,32 ; Loop count
mov eax,[A20Test]
cmp eax,[es:A20Test+10h]
jne .a20_done
push eax
.a20_wait:
inc eax
mov [A20Test],eax
io_delay
cmp eax,[es:A20Test+10h]
loopz .a20_wait
pop dword [A20Test] ; Restore original value
.a20_done:
pop eax
pop cx
pop es
pop ds
ret
disable_a20:
pushad
;
; Flush the caches
;
%if DO_WBINVD
call try_wbinvd
%endif
mov bp,[A20Type]
add bp,bp ; Convert to word offset
.adj5: jmp word [bp+A20DList]
a20d_bios:
mov ax,2400h
pushf ; Some BIOSes muck with IF
int 15h
popf
jmp short a20d_snooze
;
; Disable the "fast A20 gate"
;
a20d_fast:
in al, 092h
and al,~03h
out 092h, al
jmp short a20d_snooze
;
; Disable the keyboard controller A20 gate
;
a20d_kbc:
call empty_8042_uncond
mov al,0D1h
out 064h, al ; Write output port
call empty_8042_uncond
mov al,0DDh ; A20 off
out 060h, al
call empty_8042_uncond
mov al,0FFh ; Null command/synchronization
out 064h, al
call empty_8042_uncond
; Wait a bit for it to take effect
a20d_snooze:
push cx
mov cx, disable_wait
.delayloop: call a20_test
jz .disabled
loop .delayloop
.disabled: pop cx
a20d_dunno:
a20d_none:
popad
ret
;
; Routine to empty the 8042 KBC controller. If dl != 0
; then we will test A20 in the loop and exit if A20 is
; suddenly enabled.
;
empty_8042_uncond:
xor dl,dl
empty_8042:
call a20_test
jz .a20_on
and dl,dl
jnz .done
.a20_on: io_delay
in al, 064h ; Status port
test al,1
jz .no_output
io_delay
in al, 060h ; Read input
jmp short empty_8042
.no_output:
test al,2
jnz empty_8042
io_delay
.done: ret
;
; Execute a WBINVD instruction if possible on this CPU
;
%if DO_WBINVD
try_wbinvd:
wbinvd
ret
%endif
section .bss
alignb 4
PMESP resd 1 ; Protected mode %esp
section .idt nobits align=4096
alignb 4096
pm_idt resb 4096 ; Protected-mode IDT, followed by interrupt stubs
pm_entry: equ 0x100000
section .rodata
align 2, db 0
call32_rmidt:
dw 0ffffh ; Limit
dd 0 ; Address
section .data
alignb 2
call32_pmidt:
dw 8*256 ; Limit
dd 0 ; Address (entered later)
section .text
;
; This is the main entrypoint in this function
;
init32:
mov bx,call32_call_start ; Where to go in PM
;
; Enter protected mode. BX contains the entry point relative to the
; real-mode CS.
;
call32_enter_pm:
mov ax,cs
mov ds,ax
movzx ebp,ax
shl ebp,4 ; EBP <- CS_BASE
movzx ebx,bx
add ebx,ebp ; entry point += CS_BASE
cli
mov [SavedSP],sp
cld
call enable_a20
mov byte [call32_gdt+8+5],89h ; Mark TSS unbusy
o32 lgdt [call32_gdt] ; Set up GDT
o32 lidt [call32_pmidt] ; Set up IDT
mov eax,cr0
or al,1
mov cr0,eax ; Enter protected mode
jmp 20h:strict dword .in_pm+CS_BASE
.pm_jmp equ $-6
bits 32
.in_pm:
xor eax,eax ; Available for future use...
mov fs,eax
mov gs,eax
lldt ax
mov al,28h ; Set up data segments
mov es,eax
mov ds,eax
mov ss,eax
mov al,08h
ltr ax
mov esp,[ebp+PMESP] ; Load protmode %esp if available
jmp ebx ; Go to where we need to go
;
; This is invoked before first dispatch of the 32-bit code, in 32-bit mode
;
call32_call_start:
;
; Set up a temporary stack in the bounce buffer;
; start32.S will override this to point us to the real
; high-memory stack.
;
mov esp, (BOUNCE_SEG << 4) + 0x10000
push dword call32_enter_rm.rm_jmp+CS_BASE
push dword call32_enter_pm.pm_jmp+CS_BASE
push dword stack_end ; RM size
push dword call32_gdt+CS_BASE
push dword call32_handle_interrupt+CS_BASE
push dword CS_BASE ; Segment base
push dword (BOUNCE_SEG << 4) ; Bounce buffer address
push dword call32_syscall+CS_BASE ; Syscall entry point
call pm_entry-CS_BASE ; Run the program...
; ... fall through to call32_exit ...
call32_exit:
mov bx,call32_done ; Return to command loop
call32_enter_rm:
; Careful here... the PM code may have relocated the
; entire RM code, so we need to figure out exactly
; where we are executing from. If the PM code has
; relocated us, it *will* have adjusted the GDT to
; match, though.
call .here
.here: pop ebp
sub ebp,.here
o32 sidt [ebp+call32_pmidt]
cli
cld
mov [ebp+PMESP],esp ; Save exit %esp
xor esp,esp ; Make sure the high bits are zero
jmp 10h:.in_pm16 ; Return to 16-bit mode first
bits 16
.in_pm16:
mov ax,18h ; Real-mode-like segment
mov es,ax
mov ds,ax
mov ss,ax
mov fs,ax
mov gs,ax
lidt [call32_rmidt] ; Real-mode IDT (rm needs no GDT)
mov eax,cr0
and al,~1
mov cr0,eax
jmp MY_CS:.in_rm
.rm_jmp equ $-2
.in_rm: ; Back in real mode
mov ax,cs
mov ds,ax
mov es,ax
mov fs,ax
mov gs,ax
mov ss,ax
mov sp,[SavedSP] ; Restore stack
jmp bx ; Go to whereever we need to go...
call32_done:
call disable_a20
sti
ret
;
; 16-bit support code
;
bits 16
;
; 16-bit interrupt-handling code
;
call32_int_rm:
pushf ; Flags on stack
push cs ; Return segment
push word .cont ; Return address
push dword edx ; Segment:offset of IVT entry
retf ; Invoke IVT routine
.cont: ; ... on resume ...
mov bx,call32_int_resume
jmp call32_enter_pm ; Go back to PM
;
; 16-bit system call handling code
;
call32_sys_rm:
pop gs
pop fs
pop es
pop ds
popad
popfd
retf ; Invoke routine
.return:
pushfd
pushad
push ds
push es
push fs
push gs
mov bx,call32_sys_resume
jmp call32_enter_pm
;
; 32-bit support code
;
bits 32
;
; This is invoked on getting an interrupt in protected mode. At
; this point, we need to context-switch to real mode and invoke
; the interrupt routine.
;
; When this gets invoked, the registers are saved on the stack and
; AL contains the register number.
;
call32_handle_interrupt:
movzx eax,al
xor ebx,ebx ; Actually makes the code smaller
mov edx,[ebx+eax*4] ; Get the segment:offset of the routine
mov bx,call32_int_rm
jmp call32_enter_rm ; Go to real mode
call32_int_resume:
popad
iret
;
; Syscall invocation. We manifest a structure on the real-mode stack,
; containing the call32sys_t structure from <call32.h> as well as
; the following entries (from low to high address):
; - Target offset
; - Target segment
; - Return offset
; - Return segment (== real mode cs)
; - Return flags
;
call32_syscall:
pushfd ; Save IF among other things...
pushad ; We only need to save some, but...
cld
call .here
.here: pop ebp
sub ebp,.here
movzx edi,word [ebp+SavedSP]
sub edi,54 ; Allocate 54 bytes
mov [ebp+SavedSP],di
add edi,ebp ; Create linear address
mov esi,[esp+11*4] ; Source regs
xor ecx,ecx
mov cl,11 ; 44 bytes to copy
rep movsd
movzx eax,byte [esp+10*4] ; Interrupt number
; ecx == 0 here; adding it to the EA makes the
; encoding smaller
mov eax,[ecx+eax*4] ; Get IVT entry
stosd ; Save in stack frame
mov ax,call32_sys_rm.return ; Return offset
stosw ; Save in stack frame
mov eax,ebp
shr eax,4 ; Return segment
stosw ; Save in stack frame
mov eax,[edi-12] ; Return flags
and eax,0x200cd7 ; Mask (potentially) unsafe flags
mov [edi-12],eax ; Primary flags entry
stosw ; Return flags
mov bx,call32_sys_rm
jmp call32_enter_rm ; Go to real mode
; On return, the 44-byte return structure is on the
; real-mode stack. call32_enter_pm will leave ebp
; pointing to the real-mode base.
call32_sys_resume:
movzx esi,word [ebp+SavedSP]
mov edi,[esp+12*4] ; Dest regs
add esi,ebp ; Create linear address
and edi,edi ; NULL pointer?
jnz .do_copy
.no_copy: mov edi,esi ; Do a dummy copy-to-self
.do_copy: xor ecx,ecx
mov cl,11 ; 44 bytes
rep movsd ; Copy register block
add word [ebp+SavedSP],44 ; Remove from stack
popad
popfd
ret ; Return to 32-bit program
|