File: btrfs.c

package info (click to toggle)
syslinux 3%3A6.03%2Bdfsg-14.1%2Bdeb9u1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 41,508 kB
  • sloc: ansic: 358,767; asm: 9,608; pascal: 4,809; perl: 3,894; makefile: 2,486; sh: 315; python: 266; xml: 39
file content (711 lines) | stat: -rw-r--r-- 19,722 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
/*
 * btrfs.c -- readonly btrfs support for syslinux
 * Some data structures are derivated from btrfs-tools-0.19 ctree.h
 * Copyright 2009-2014 Intel Corporation; authors: Alek Du, H. Peter Anvin
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, Inc., 53 Temple Place Ste 330,
 * Boston MA 02111-1307, USA; either version 2 of the License, or
 * (at your option) any later version; incorporated herein by reference.
 *
 */

#include <dprintf.h>
#include <stdio.h>
#include <string.h>
#include <cache.h>
#include <core.h>
#include <disk.h>
#include <fs.h>
#include <dirent.h>
#include <minmax.h>
#include "btrfs.h"

union tree_buf {
	struct btrfs_header header;
	struct btrfs_node node;
	struct btrfs_leaf leaf;
};

/* filesystem instance structure */
struct btrfs_info {
	u64 fs_tree;
	struct btrfs_super_block sb;
	struct btrfs_chunk_map chunk_map;
	union tree_buf *tree_buf;
};

/* compare function used for bin_search */
typedef int (*cmp_func)(const void *ptr1, const void *ptr2);

/* simple but useful bin search, used for chunk search and btree search */
static int bin_search(void *ptr, int item_size, void *cmp_item, cmp_func func,
		      int min, int max, int *slot)
{
	int low = min;
	int high = max;
	int mid;
	int ret;
	unsigned long offset;
	void *item;

	while (low < high) {
		mid = (low + high) / 2;
		offset = mid * item_size;

		item = ptr + offset;
		ret = func(item, cmp_item);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

static int btrfs_comp_chunk_map(struct btrfs_chunk_map_item *m1,
				struct btrfs_chunk_map_item *m2)
{
	if (m1->logical > m2->logical)
		return 1;
	if (m1->logical < m2->logical)
		return -1;
	return 0;
}

/* insert a new chunk mapping item */
static void insert_chunk_item(struct fs_info *fs,
			      struct btrfs_chunk_map_item *item)
{
	struct btrfs_info * const bfs = fs->fs_info;
	struct btrfs_chunk_map *chunk_map = &bfs->chunk_map;
	int ret;
	int slot;
	int i;

	if (chunk_map->map == NULL) { /* first item */
		chunk_map->map_length = BTRFS_MAX_CHUNK_ENTRIES;
		chunk_map->map = malloc(chunk_map->map_length
					* sizeof(chunk_map->map[0]));
		chunk_map->map[0] = *item;
		chunk_map->cur_length = 1;
		return;
	}
	ret = bin_search(chunk_map->map, sizeof(*item), item,
			(cmp_func)btrfs_comp_chunk_map, 0,
			chunk_map->cur_length, &slot);
	if (ret == 0)/* already in map */
		return;
	if (chunk_map->cur_length == BTRFS_MAX_CHUNK_ENTRIES) {
		/* should be impossible */
		printf("too many chunk items\n");
		return;
	}
	for (i = chunk_map->cur_length; i > slot; i--)
		chunk_map->map[i] = chunk_map->map[i-1];
	chunk_map->map[slot] = *item;
	chunk_map->cur_length++;
}

static inline void insert_map(struct fs_info *fs, struct btrfs_disk_key *key,
			      struct btrfs_chunk *chunk)
{
	struct btrfs_stripe *stripe = &chunk->stripe;
	struct btrfs_stripe *stripe_end = stripe + chunk->num_stripes;
	struct btrfs_chunk_map_item item;

	item.logical = key->offset;
	item.length = chunk->length;
	for ( ; stripe < stripe_end; stripe++) {
		item.devid = stripe->devid;
		item.physical = stripe->offset;
		insert_chunk_item(fs, &item);
	}
}

/*
 * from sys_chunk_array or chunk_tree, we can convert a logical address to
 * a physical address we can not support multi device case yet
 */
static u64 logical_physical(struct fs_info *fs, u64 logical)
{
	struct btrfs_info * const bfs = fs->fs_info;
	struct btrfs_chunk_map *chunk_map = &bfs->chunk_map;
	struct btrfs_chunk_map_item item;
	int slot, ret;

	item.logical = logical;
	ret = bin_search(chunk_map->map, sizeof(chunk_map->map[0]), &item,
			(cmp_func)btrfs_comp_chunk_map, 0,
			chunk_map->cur_length, &slot);
	if (ret == 0)
		slot++;
	else if (slot == 0)
		return -1;
	if (logical >=
		chunk_map->map[slot-1].logical + chunk_map->map[slot-1].length)
		return -1;
	return chunk_map->map[slot-1].physical + logical -
			chunk_map->map[slot-1].logical;
}

/* btrfs has several super block mirrors, need to calculate their location */
static inline u64 btrfs_sb_offset(int mirror)
{
	u64 start = 16 * 1024;
	if (mirror)
		return start << (BTRFS_SUPER_MIRROR_SHIFT * mirror);
	return BTRFS_SUPER_INFO_OFFSET;
}

/* find the most recent super block */
static void btrfs_read_super_block(struct fs_info *fs)
{
	int i;
	int ret;
	u8 fsid[BTRFS_FSID_SIZE];
	u64 offset;
	u64 transid = 0;
	struct btrfs_super_block buf;
	struct btrfs_info * const bfs = fs->fs_info;

	bfs->sb.total_bytes = ~0; /* Unknown as of yet */

	/* find most recent super block */
	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		offset = btrfs_sb_offset(i);
		if (offset >= bfs->sb.total_bytes)
			break;

		ret = cache_read(fs, (char *)&buf, offset, sizeof(buf));
		if (ret < sizeof(buf))
			break;

		if (buf.bytenr != offset ||
		    strncmp((char *)(&buf.magic), BTRFS_MAGIC,
			    sizeof(buf.magic)))
			continue;

		if (i == 0)
			memcpy(fsid, buf.fsid, sizeof(fsid));
		else if (memcmp(fsid, buf.fsid, sizeof(fsid)))
			continue;

		if (buf.generation > transid) {
			memcpy(&bfs->sb, &buf, sizeof(bfs->sb));
			transid = buf.generation;
		}
	}
}

static inline unsigned long btrfs_chunk_item_size(int num_stripes)
{
	return sizeof(struct btrfs_chunk) +
		sizeof(struct btrfs_stripe) * (num_stripes - 1);
}

static void clear_path(struct btrfs_path *path)
{
	memset(path, 0, sizeof(*path));
}

static int btrfs_comp_keys(const struct btrfs_disk_key *k1,
			   const struct btrfs_disk_key *k2)
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}

/* compare keys but ignore offset, is useful to enumerate all same kind keys */
static int btrfs_comp_keys_type(const struct btrfs_disk_key *k1,
				const struct btrfs_disk_key *k2)
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	return 0;
}

/* seach tree directly on disk ... */
static int search_tree(struct fs_info *fs, u64 loffset,
		       struct btrfs_disk_key *key, struct btrfs_path *path)
{
	struct btrfs_info * const bfs = fs->fs_info;
	union tree_buf *tree_buf = bfs->tree_buf;
	int slot, ret;
	u64 offset;

	offset = logical_physical(fs, loffset);
	cache_read(fs, &tree_buf->header, offset, sizeof(tree_buf->header));
	if (tree_buf->header.level) {
		/* inner node */
		cache_read(fs, (char *)&tree_buf->node.ptrs[0],
			   offset + sizeof tree_buf->header,
			   bfs->sb.nodesize - sizeof tree_buf->header);
		path->itemsnr[tree_buf->header.level] = tree_buf->header.nritems;
		path->offsets[tree_buf->header.level] = loffset;
		ret = bin_search(&tree_buf->node.ptrs[0],
				 sizeof(struct btrfs_key_ptr),
				 key, (cmp_func)btrfs_comp_keys,
				 path->slots[tree_buf->header.level],
				 tree_buf->header.nritems, &slot);
		if (ret && slot > path->slots[tree_buf->header.level])
			slot--;
		path->slots[tree_buf->header.level] = slot;
		ret = search_tree(fs, tree_buf->node.ptrs[slot].blockptr,
				  key, path);
	} else {
		/* leaf node */
		cache_read(fs, (char *)&tree_buf->leaf.items[0],
			   offset + sizeof tree_buf->header,
			   bfs->sb.leafsize - sizeof tree_buf->header);
		path->itemsnr[tree_buf->header.level] = tree_buf->header.nritems;
		path->offsets[tree_buf->header.level] = loffset;
		ret = bin_search(&tree_buf->leaf.items[0],
				 sizeof(struct btrfs_item),
				 key, (cmp_func)btrfs_comp_keys,
				 path->slots[0],
				 tree_buf->header.nritems, &slot);
		if (ret && slot > path->slots[tree_buf->header.level])
			slot--;
		path->slots[tree_buf->header.level] = slot;
		path->item = tree_buf->leaf.items[slot];
		cache_read(fs, (char *)&path->data,
			   offset + sizeof tree_buf->header +
			   tree_buf->leaf.items[slot].offset,
			   tree_buf->leaf.items[slot].size);
	}
	return ret;
}

/* return 0 if leaf found */
static int next_leaf(struct fs_info *fs, struct btrfs_disk_key *key, struct btrfs_path *path)
{
	int slot;
	int level = 1;

	while (level < BTRFS_MAX_LEVEL) {
		if (!path->itemsnr[level]) /* no more nodes */
			return 1;
		slot = path->slots[level] + 1;
		if (slot >= path->itemsnr[level]) {
			level++;
			continue;;
		}
		path->slots[level] = slot;
		path->slots[level-1] = 0; /* reset low level slots info */
		search_tree(fs, path->offsets[level], key, path);
		break;
	}
	if (level == BTRFS_MAX_LEVEL)
		return 1;
	return 0;
}

/* return 0 if slot found */
static int next_slot(struct fs_info *fs, struct btrfs_disk_key *key,
		     struct btrfs_path *path)
{
	int slot;

	if (!path->itemsnr[0])
		return 1;
	slot = path->slots[0] + 1;
	if (slot >= path->itemsnr[0])
		return 1;
	path->slots[0] = slot;
	search_tree(fs, path->offsets[0], key, path);
	return 0;
}

/*
 * read chunk_array in super block
 */
static void btrfs_read_sys_chunk_array(struct fs_info *fs)
{
	struct btrfs_info * const bfs = fs->fs_info;
	struct btrfs_disk_key *key;
	struct btrfs_chunk *chunk;
	int cur;

	/* read chunk array in superblock */
	cur = 0;
	while (cur < bfs->sb.sys_chunk_array_size) {
		key = (struct btrfs_disk_key *)(bfs->sb.sys_chunk_array + cur);
		cur += sizeof(*key);
		chunk = (struct btrfs_chunk *)(bfs->sb.sys_chunk_array + cur);
		cur += btrfs_chunk_item_size(chunk->num_stripes);
		insert_map(fs, key, chunk);
	}
}

/* read chunk items from chunk_tree and insert them to chunk map */
static void btrfs_read_chunk_tree(struct fs_info *fs)
{
	struct btrfs_info * const bfs = fs->fs_info;
	struct btrfs_disk_key ignore_key;
	struct btrfs_disk_key search_key;
	struct btrfs_chunk *chunk;
	struct btrfs_path path;

	if (!(bfs->sb.flags & BTRFS_SUPER_FLAG_METADUMP)) {
		if (bfs->sb.num_devices > 1)
			printf("warning: only support single device btrfs\n");

		ignore_key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
		ignore_key.type = BTRFS_DEV_ITEM_KEY;

		/* read chunk from chunk_tree */
		search_key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
		search_key.type = BTRFS_CHUNK_ITEM_KEY;
		search_key.offset = 0;
		clear_path(&path);
		search_tree(fs, bfs->sb.chunk_root, &search_key, &path);
		do {
			do {
				/* skip information about underlying block
				 * devices.
				 */
				if (!btrfs_comp_keys_type(&ignore_key,
							  &path.item.key))
					continue;
				if (btrfs_comp_keys_type(&search_key,
							 &path.item.key))
					break;

				chunk = (struct btrfs_chunk *)(path.data);
				insert_map(fs, &path.item.key, chunk);
			} while (!next_slot(fs, &search_key, &path));
			if (btrfs_comp_keys_type(&search_key, &path.item.key))
				break;
		} while (!next_leaf(fs, &search_key, &path));
	}
}

static inline u64 btrfs_name_hash(const char *name, int len)
{
	return btrfs_crc32c((u32)~1, name, len);
}

static struct inode *btrfs_iget_by_inr(struct fs_info *fs, u64 inr)
{
	struct btrfs_info * const bfs = fs->fs_info;
	struct inode *inode;
	struct btrfs_inode_item inode_item;
	struct btrfs_disk_key search_key;
	struct btrfs_path path;
	int ret;

	/* FIXME: some BTRFS inode member are u64, while our logical inode
           is u32, we may need change them to u64 later */
	search_key.objectid = inr;
	search_key.type = BTRFS_INODE_ITEM_KEY;
	search_key.offset = 0;
	clear_path(&path);
	ret = search_tree(fs, bfs->fs_tree, &search_key, &path);
	if (ret)
		return NULL;
	inode_item = *(struct btrfs_inode_item *)path.data;
	if (!(inode = alloc_inode(fs, inr, sizeof(struct btrfs_pvt_inode))))
		return NULL;
	inode->ino = inr;
	inode->size = inode_item.size;
	inode->mode = IFTODT(inode_item.mode);

	if (inode->mode == DT_REG || inode->mode == DT_LNK) {
		struct btrfs_file_extent_item extent_item;
		u64 offset;

		/* get file_extent_item */
		search_key.type = BTRFS_EXTENT_DATA_KEY;
		search_key.offset = 0;
		clear_path(&path);
		ret = search_tree(fs, bfs->fs_tree, &search_key, &path);
		if (ret)
			return NULL; /* impossible */
		extent_item = *(struct btrfs_file_extent_item *)path.data;
		if (extent_item.type == BTRFS_FILE_EXTENT_INLINE)/* inline file */
			offset = path.offsets[0] + sizeof(struct btrfs_header)
				+ path.item.offset
				+ offsetof(struct btrfs_file_extent_item, disk_bytenr);
		else
			offset = extent_item.disk_bytenr;
		PVT(inode)->offset = offset;
	}
	return inode;
}

static struct inode *btrfs_iget_root(struct fs_info *fs)
{
	/* BTRFS_FIRST_CHUNK_TREE_OBJECTID(256) actually is first OBJECTID for FS_TREE */
	return btrfs_iget_by_inr(fs, BTRFS_FIRST_CHUNK_TREE_OBJECTID);
}

static struct inode *btrfs_iget(const char *name, struct inode *parent)
{
	struct fs_info * const fs = parent->fs;
	struct btrfs_info * const bfs = fs->fs_info;
	struct btrfs_disk_key search_key;
	struct btrfs_path path;
	struct btrfs_dir_item dir_item;
	int ret;

	search_key.objectid = parent->ino;
	search_key.type = BTRFS_DIR_ITEM_KEY;
	search_key.offset = btrfs_name_hash(name, strlen(name));
	clear_path(&path);
	ret = search_tree(fs, bfs->fs_tree, &search_key, &path);
	if (ret)
		return NULL;
	dir_item = *(struct btrfs_dir_item *)path.data;

	return btrfs_iget_by_inr(fs, dir_item.location.objectid);
}

static int btrfs_readlink(struct inode *inode, char *buf)
{
	cache_read(inode->fs, buf,
		   logical_physical(inode->fs, PVT(inode)->offset),
		   inode->size);
	buf[inode->size] = '\0';
	return inode->size;
}

static int btrfs_readdir(struct file *file, struct dirent *dirent)
{
	struct fs_info * const fs = file->fs;
	struct btrfs_info * const bfs = fs->fs_info;
	struct inode * const inode = file->inode;
	struct btrfs_disk_key search_key;
	struct btrfs_path path;
	struct btrfs_dir_item *dir_item;
	int ret;

	/*
	 * we use file->offset to store last search key.offset, will will search
	 * key that lower that offset, 0 means first search and we will search
         * -1UL, which is the biggest possible key
         */
	search_key.objectid = inode->ino;
	search_key.type = BTRFS_DIR_ITEM_KEY;
	search_key.offset = file->offset - 1;
	clear_path(&path);
	ret = search_tree(fs, bfs->fs_tree, &search_key, &path);

	if (ret) {
		if (btrfs_comp_keys_type(&search_key, &path.item.key))
			return -1;
	}

	dir_item = (struct btrfs_dir_item *)path.data;
	file->offset = path.item.key.offset;
	dirent->d_ino = dir_item->location.objectid;
	dirent->d_off = file->offset;
	dirent->d_reclen = offsetof(struct dirent, d_name)
		+ dir_item->name_len + 1;
	dirent->d_type = IFTODT(dir_item->type);
	memcpy(dirent->d_name, dir_item + 1, dir_item->name_len);
	dirent->d_name[dir_item->name_len] = '\0';

	return 0;
}

static int btrfs_next_extent(struct inode *inode, uint32_t lstart)
{
	struct btrfs_disk_key search_key;
	struct btrfs_file_extent_item extent_item;
	struct btrfs_path path;
	int ret;
	u64 offset;
	struct fs_info * const fs = inode->fs;
	struct btrfs_info * const bfs = fs->fs_info;
	u32 sec_shift = SECTOR_SHIFT(fs);
	u32 sec_size = SECTOR_SIZE(fs);

	search_key.objectid = inode->ino;
	search_key.type = BTRFS_EXTENT_DATA_KEY;
	search_key.offset = lstart << sec_shift;
	clear_path(&path);
	ret = search_tree(fs, bfs->fs_tree, &search_key, &path);
	if (ret) { /* impossible */
		printf("btrfs: search extent data error!\n");
		return -1;
	}
	extent_item = *(struct btrfs_file_extent_item *)path.data;

	if (extent_item.encryption) {
	    printf("btrfs: found encrypted data, cannot continue!\n");
	    return -1;
	}
	if (extent_item.compression) {
	    printf("btrfs: found compressed data, cannot continue!\n");
	    return -1;
	}

	if (extent_item.type == BTRFS_FILE_EXTENT_INLINE) {/* inline file */
		/* we fake a extent here, and PVT of inode will tell us */
		offset = path.offsets[0] + sizeof(struct btrfs_header)
			+ path.item.offset
			+ offsetof(struct btrfs_file_extent_item, disk_bytenr);
		inode->next_extent.len =
			(inode->size + sec_size -1) >> sec_shift;
	} else {
		offset = extent_item.disk_bytenr + extent_item.offset;
		inode->next_extent.len =
			(extent_item.num_bytes + sec_size - 1) >> sec_shift;
	}
	inode->next_extent.pstart = logical_physical(fs, offset) >> sec_shift;
	PVT(inode)->offset = offset;
	return 0;
}

static uint32_t btrfs_getfssec(struct file *file, char *buf, int sectors,
					bool *have_more)
{
	u32 ret;
	struct fs_info *fs = file->fs;
	u32 off = PVT(file->inode)->offset % SECTOR_SIZE(fs);
	bool handle_inline = false;

	if (off && !file->offset) {/* inline file first read patch */
		file->inode->size += off;
		handle_inline = true;
	}
	ret = generic_getfssec(file, buf, sectors, have_more);
	if (!ret)
		return ret;
	off = PVT(file->inode)->offset % SECTOR_SIZE(fs);
	if (handle_inline) {/* inline file patch */
		ret -= off;
		memcpy(buf, buf + off, ret);
	}
	return ret;
}

static void btrfs_get_fs_tree(struct fs_info *fs)
{
	struct btrfs_info * const bfs = fs->fs_info;
	struct btrfs_disk_key search_key;
	struct btrfs_path path;
	struct btrfs_root_item *tree;
	bool subvol_ok = false;

	/* check if subvol is filled by installer */
	if (*SubvolName) {
		search_key.objectid = BTRFS_FS_TREE_OBJECTID;
		search_key.type = BTRFS_ROOT_REF_KEY;
		search_key.offset = 0;
		clear_path(&path);
		if (search_tree(fs, bfs->sb.root, &search_key, &path))
			next_slot(fs, &search_key, &path);
		do {
			do {
				struct btrfs_root_ref *ref;
				int pathlen;

				if (btrfs_comp_keys_type(&search_key,
							&path.item.key))
					break;
				ref = (struct btrfs_root_ref *)path.data;
				pathlen = path.item.size - sizeof(struct btrfs_root_ref);

				if (!strncmp((char*)(ref + 1), SubvolName, pathlen)) {
					subvol_ok = true;
					break;
				}
			} while (!next_slot(fs, &search_key, &path));
			if (subvol_ok)
				break;
			if (btrfs_comp_keys_type(&search_key, &path.item.key))
				break;
		} while (!next_leaf(fs, &search_key, &path));
		if (!subvol_ok) /* should be impossible */
			printf("no subvol found!\n");
	}
	/* find fs_tree from tree_root */
	if (subvol_ok)
		search_key.objectid = path.item.key.offset;
	else /* "default" volume */
		search_key.objectid = BTRFS_FS_TREE_OBJECTID;
	search_key.type = BTRFS_ROOT_ITEM_KEY;
	search_key.offset = -1;
	clear_path(&path);
	search_tree(fs, bfs->sb.root, &search_key, &path);
	tree = (struct btrfs_root_item *)path.data;
	bfs->fs_tree = tree->bytenr;
}

/* init. the fs meta data, return the block size shift bits. */
static int btrfs_fs_init(struct fs_info *fs)
{
	struct disk *disk = fs->fs_dev->disk;
	struct btrfs_info *bfs;

	btrfs_init_crc32c();
    
	bfs = zalloc(sizeof(struct btrfs_info));
	if (!bfs)
		return -1;

	fs->fs_info = bfs;

	fs->sector_shift = disk->sector_shift;
	fs->sector_size  = 1 << fs->sector_shift;
	fs->block_shift  = BTRFS_BLOCK_SHIFT;
	fs->block_size   = 1 << fs->block_shift;

	/* Initialize the block cache */
	cache_init(fs->fs_dev, fs->block_shift);

	btrfs_read_super_block(fs);
	if (bfs->sb.magic != BTRFS_MAGIC_N)
		return -1;
	bfs->tree_buf = malloc(max(bfs->sb.nodesize, bfs->sb.leafsize));
	if (!bfs->tree_buf)
		return -1;
	btrfs_read_sys_chunk_array(fs);
	btrfs_read_chunk_tree(fs);
	btrfs_get_fs_tree(fs);

	return fs->block_shift;
}

const struct fs_ops btrfs_fs_ops = {
    .fs_name       = "btrfs",
    .fs_flags      = 0,
    .fs_init       = btrfs_fs_init,
    .iget_root     = btrfs_iget_root,
    .iget          = btrfs_iget,
    .readlink      = btrfs_readlink,
    .getfssec      = btrfs_getfssec,
    .close_file    = generic_close_file,
    .mangle_name   = generic_mangle_name,
    .next_extent   = btrfs_next_extent,
    .readdir       = btrfs_readdir,
    .chdir_start   = generic_chdir_start,
    .open_config   = generic_open_config,
    .fs_uuid       = NULL,
};