1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
/*
* Copyright (c) 2002-2013 Balabit
* Copyright (c) 1998-2013 Balázs Scheidler
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* As an additional exemption you are allowed to compile & link against the
* OpenSSL libraries as published by the OpenSSL project. See the file
* COPYING for details.
*
*/
#include "mainloop-worker.h"
#include "mainloop-call.h"
#include "tls-support.h"
#include "apphook.h"
#include <iv.h>
typedef enum { GENERAL_THREAD = 0, OUTPUT_THREAD, EXTERNAL_INPUT_THREAD, MAIN_LOOP_WORKER_TYPE_MAX} MainLoopWorkerType;
TLS_BLOCK_START
{
/* Thread IDs are low numbered integers that can be used to index
* per-thread data in an array. IDs get reused and the smallest possible
* ID is allocated for newly started threads. */
/* the thread id is shifted by one, to make 0 the uninitialized state,
* e.g. everything that sets it adds +1, everything that queries it
* subtracts 1 */
gint main_loop_worker_id;
MainLoopWorkerType main_loop_worker_type;
struct iv_list_head batch_callbacks;
}
TLS_BLOCK_END;
#define main_loop_worker_id __tls_deref(main_loop_worker_id)
#define batch_callbacks __tls_deref(batch_callbacks)
#define main_loop_worker_type __tls_deref(main_loop_worker_type)
/* cause workers to stop, no new I/O jobs to be submitted */
volatile gboolean main_loop_workers_quit;
/* number of I/O worker jobs running */
static gint main_loop_workers_running;
/* the function to be killed when all threads have exited */
static void (*main_loop_workers_sync_func)(void);
static struct iv_task main_loop_workers_reenable_jobs_task;
/* thread ID allocation */
static GStaticMutex main_loop_workers_idmap_lock = G_STATIC_MUTEX_INIT;
static guint64 main_loop_workers_idmap[MAIN_LOOP_WORKER_TYPE_MAX];
static void
_allocate_thread_id(void)
{
gint id;
g_static_mutex_lock(&main_loop_workers_idmap_lock);
/* NOTE: this algorithm limits the number of I/O worker threads to 64,
* since the ID map is stored in a single 64 bit integer. If we ever need
* more threads than that, we can generalize this algorithm further. */
main_loop_worker_id = 0;
if(main_loop_worker_type != EXTERNAL_INPUT_THREAD)
{
for (id = 0; id < MAIN_LOOP_MAX_WORKER_THREADS; id++)
{
if ((main_loop_workers_idmap[main_loop_worker_type] & (1 << id)) == 0)
{
/* id not yet used */
main_loop_worker_id = (id + 1) + (main_loop_worker_type * MAIN_LOOP_MAX_WORKER_THREADS);
main_loop_workers_idmap[main_loop_worker_type] |= (1 << id);
break;
}
}
}
g_static_mutex_unlock(&main_loop_workers_idmap_lock);
}
static void
_release_thread_id(void)
{
g_static_mutex_lock(&main_loop_workers_idmap_lock);
if (main_loop_worker_id)
{
main_loop_workers_idmap[main_loop_worker_type] &= ~(1 << (main_loop_worker_id - 1));
main_loop_worker_id = 0;
}
g_static_mutex_unlock(&main_loop_workers_idmap_lock);
}
/* NOTE: only used by the unit test program to emulate worker threads with
* LogQueue, other threads acquire a thread id when they start up. */
void
main_loop_worker_set_thread_id(gint id)
{
main_loop_worker_id = id + 1;
}
gint
main_loop_worker_get_thread_id(void)
{
return main_loop_worker_id - 1;
}
typedef struct _WorkerExitNotification
{
WorkerExitNotificationFunc func;
gpointer user_data;
} WorkerExitNotification;
static GList *exit_notification_list = NULL;
static void
_register_exit_notification_callback(WorkerExitNotificationFunc func, gpointer user_data)
{
WorkerExitNotification *cfunc = g_new(WorkerExitNotification, 1);
cfunc->func = func;
cfunc->user_data = user_data;
exit_notification_list = g_list_append(exit_notification_list, cfunc);
}
static void
_invoke_worker_exit_callback(WorkerExitNotification *func)
{
func->func(func->user_data);
}
static void
_request_all_threads_to_exit(void)
{
g_list_foreach(exit_notification_list, (GFunc) _invoke_worker_exit_callback, NULL);
g_list_foreach(exit_notification_list, (GFunc) g_free, NULL);
g_list_free(exit_notification_list);
exit_notification_list = NULL;
main_loop_workers_quit = TRUE;
}
/* Call this function from worker threads, when you start up */
void
main_loop_worker_thread_start(void *cookie)
{
WorkerOptions *worker_options = cookie;
main_loop_worker_type = GENERAL_THREAD;
if (worker_options && worker_options->is_output_thread)
{
main_loop_worker_type = OUTPUT_THREAD;
}
else if(worker_options && worker_options->is_external_input)
{
main_loop_worker_type = EXTERNAL_INPUT_THREAD;
}
_allocate_thread_id();
INIT_IV_LIST_HEAD(&batch_callbacks);
app_thread_start();
}
/* Call this function from worker threads, when you stop */
void
main_loop_worker_thread_stop(void)
{
app_thread_stop();
_release_thread_id();
}
/*
* This function is called in the main thread prior to starting the
* processing of a work item in a worker thread.
*/
void
main_loop_worker_job_start(void)
{
main_loop_assert_main_thread();
main_loop_workers_running++;
}
/*
* This function is called in the main thread after a job was finished in
* one of the worker threads.
*
* If an intrusive operation (reload, termination) is pending and the number
* of workers has dropped to zero, it commences with the intrusive
* operation, as in that case we can safely assume that all workers exited.
*/
void
main_loop_worker_job_complete(void)
{
main_loop_assert_main_thread();
main_loop_workers_running--;
if (main_loop_workers_quit && main_loop_workers_running == 0)
{
/* NOTE: we can't reenable I/O jobs by setting
* main_loop_io_workers_quit to FALSE right here, because a task
* generated by the old config might still be sitting in the task
* queue, to be invoked once we return from here. Tasks cannot be
* cancelled, thus we have to get to the end of the currently running
* task queue.
*
* Thus we register another task
* (&main_loop_io_workers_reenable_jobs_task), which is guaranteed to
* be added to the end of the task queue, which reenables task
* submission.
*
*
* A second constraint is that any tasks submitted by the reload
* logic (sitting behind the sync_func() call below), MUST be
* registered after the reenable_jobs_task, because otherwise some
* I/O events will be missed, due to main_loop_io_workers_quit being
* TRUE.
*
*
* |OldTask1|OldTask2|OldTask3| ReenableTask |NewTask1|NewTask2|NewTask3|
* ^
* | ivykis task list
*
* OldTasks get dropped because _quit is TRUE, NewTasks have to be
* executed properly, otherwise we'd hang.
*/
iv_task_register(&main_loop_workers_reenable_jobs_task);
main_loop_workers_sync_func();
}
}
/*
* Register a function to be called back when the current I/O job is
* finished (in the worker thread).
*
* NOTE: we only support one pending callback at a time, may become a list of callbacks if needed in the future
*/
void
main_loop_worker_register_batch_callback(WorkerBatchCallback *cb)
{
iv_list_add(&cb->list, &batch_callbacks);
}
void
main_loop_worker_invoke_batch_callbacks(void)
{
struct iv_list_head *lh, *lh2;
iv_list_for_each_safe(lh, lh2, &batch_callbacks)
{
WorkerBatchCallback *cb = iv_list_entry(lh, WorkerBatchCallback, list);
cb->func(cb->user_data);
iv_list_del_init(&cb->list);
}
}
typedef struct _WorkerThreadParams
{
WorkerThreadFunc func;
gpointer data;
WorkerOptions *worker_options;
} WorkerThreadParams;
static gpointer
_worker_thread_func(gpointer st)
{
WorkerThreadParams *p = st;
main_loop_worker_thread_start(p->worker_options);
p->func(p->data);
main_loop_call((MainLoopTaskFunc) main_loop_worker_job_complete, NULL, TRUE);
main_loop_worker_thread_stop();
/* NOTE: this assert aims to validate that the worker thread in fact
* invokes main_loop_worker_invoke_batch_callbacks() during its operation.
* Please do so every once a couple of messages, hopefully you have a
* natural barrier that let's you decide when, the easiest would be
* log-fetch-limit(), but other limits may also be applicable.
*/
g_assert(iv_list_empty(&batch_callbacks));
g_free(st);
return NULL;
}
void
main_loop_create_worker_thread(WorkerThreadFunc func, WorkerExitNotificationFunc terminate_func, gpointer data, WorkerOptions *worker_options)
{
GThread *h;
WorkerThreadParams *p;
main_loop_assert_main_thread();
p = g_new0(WorkerThreadParams, 1);
p->func = func;
p->data = data;
p->worker_options = worker_options;
main_loop_worker_job_start();
if (terminate_func)
_register_exit_notification_callback(terminate_func, data);
h = g_thread_create_full(_worker_thread_func, p, 1024 * 1024, FALSE, TRUE, G_THREAD_PRIORITY_NORMAL, NULL);
g_assert(h != NULL);
}
static void
_reenable_worker_jobs(void *s)
{
main_loop_workers_quit = FALSE;
main_loop_workers_sync_func = NULL;
}
void
main_loop_worker_sync_call(void (*func)(void))
{
#if 0
/* FIXME */
g_assert(main_loop_workers_sync_func == NULL || main_loop_workers_sync_func == func || under_termination);
#endif
g_assert(main_loop_workers_sync_func == NULL || main_loop_workers_sync_func == func);
if (main_loop_workers_running == 0)
{
func();
}
else
{
main_loop_workers_sync_func = func;
_request_all_threads_to_exit();
}
}
void
main_loop_worker_init(void)
{
IV_TASK_INIT(&main_loop_workers_reenable_jobs_task);
main_loop_workers_reenable_jobs_task.handler = _reenable_worker_jobs;
}
void
main_loop_worker_deinit(void)
{
}
|