1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
/*
* Copyright (c) 2021 Balazs Scheidler <bazsi77@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* As an additional exemption you are allowed to compile & link against the
* OpenSSL libraries as published by the OpenSSL project. See the file
* COPYING for details.
*/
#include "generic-number.h"
#include <math.h>
gdouble
gn_as_double(const GenericNumber *number)
{
if (number->type == GN_DOUBLE)
return number->value.raw_double;
else if (number->type == GN_INT64)
return (gdouble) number->value.raw_int64;
g_assert_not_reached();
}
void
gn_set_double(GenericNumber *number, gdouble value, gint precision)
{
number->type = GN_DOUBLE;
number->value.raw_double = value;
number->precision = precision > 0 ? precision : 20;
}
gint64
gn_as_int64(const GenericNumber *number)
{
if (number->type == GN_DOUBLE)
{
double r = round(number->value.raw_double);
if (r <= (double) G_MININT64)
return G_MININT64;
if (r >= (double) G_MAXINT64)
return G_MAXINT64;
return (gint64) r;
}
else if (number->type == GN_INT64)
return number->value.raw_int64;
g_assert_not_reached();
}
void
gn_set_int64(GenericNumber *number, gint64 value)
{
number->type = GN_INT64;
number->value.raw_int64 = value;
number->precision = 0;
}
gboolean
gn_is_zero(const GenericNumber *number)
{
if (number->type == GN_INT64)
return number->value.raw_int64 == 0;
if (number->type == GN_DOUBLE)
return fabs(number->value.raw_double) < DBL_EPSILON;
g_assert_not_reached();
}
void
gn_set_nan(GenericNumber *number)
{
number->type = GN_NAN;
}
gboolean
gn_is_nan(const GenericNumber *number)
{
return number->type == GN_NAN || (number->type == GN_DOUBLE && isnan(number->value.raw_double));
}
static gint
_compare_int64(gint64 l, gint64 r)
{
if (l == r)
return 0;
else if (l < r)
return -1;
return 1;
}
static gint
_compare_double(gdouble l, gdouble r)
{
if (fabs(l - r) < DBL_EPSILON)
return 0;
else if (l < r)
return -1;
return 1;
}
gint
gn_compare(const GenericNumber *left, const GenericNumber *right)
{
if (left->type == right->type)
{
if (left->type == GN_INT64)
return _compare_int64(gn_as_int64(left), gn_as_int64(right));
else if (left->type == GN_DOUBLE)
return _compare_double(gn_as_double(left), gn_as_double(right));
}
else if (left->type == GN_NAN || right->type == GN_NAN)
{
;
}
else if (left->type == GN_DOUBLE || right->type == GN_DOUBLE)
{
return _compare_double(gn_as_double(left), gn_as_double(right));
}
else
{
return _compare_int64(gn_as_int64(left), gn_as_int64(right));
}
/* NaNs cannot be compared */
g_assert_not_reached();
}
|