1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
|
/*
* Copyright (c) 2002-2012 Balabit
* Copyright (c) 1998-2012 Balázs Scheidler
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* As an additional exemption you are allowed to compile & link against the
* OpenSSL libraries as published by the OpenSSL project. See the file
* COPYING for details.
*
*/
#include "logqueue.h"
#include "logpipe.h"
#include "messages.h"
#include "serialize.h"
#include "stats/stats-registry.h"
#include "stats/stats-counter.h"
#include "stats/stats-cluster-single.h"
#include "mainloop-worker.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <iv_thread.h>
QueueType log_queue_fifo_type = "FIFO";
/*
* LogFifo is a scalable first-in-first-output queue implementation, that:
*
* - has a per-thread, unlocked input queue where threads can put their items
*
* - has a locked wait-queue where items go once the per-thread input
* would be overflown or if the input thread goes to sleep (e.g. one
* lock acquisition per a longer period)
*
* - has an unlocked output queue where items from the wait queue go, once
* it becomes depleted.
*
* This means that items flow in this sequence from one list to the next:
*
* input queue (per-thread) -> wait queue (locked) -> output queue (single-threaded)
*
* Fastpath is:
* - input threads putting elements on their per-thread queue (lockless)
* - output threads removing elements from the output queue (lockless)
*
* Slowpath:
* - input queue is overflown (or the input thread goes to sleep), wait
* queue mutex is grabbed, all elements are put to the wait queue.
*
* - output queue is depleted, wait queue mutex is grabbed, all elements
* on the wait queue is put to the output queue
*
* Threading assumptions:
* - the head of the queue is only manipulated from the output thread
* - the tail of the queue is only manipulated from the input threads
*
*/
typedef struct _InputQueue
{
struct iv_list_head items;
WorkerBatchCallback cb;
guint32 len;
guint32 non_flow_controlled_len;
guint16 finish_cb_registered;
} InputQueue;
typedef struct _OverflowQueue
{
struct iv_list_head items;
gint len;
gint non_flow_controlled_len;
} OverflowQueue;
typedef struct _LogQueueFifo
{
LogQueue super;
/* scalable qoverflow implementation */
OverflowQueue output_queue;
OverflowQueue wait_queue;
OverflowQueue backlog_queue; /* entries that were sent but not acked yet */
gint log_fifo_size;
struct
{
StatsClusterKey *capacity_sc_key;
StatsCounterItem *capacity;
} metrics;
gint num_input_queues;
InputQueue input_queues[0];
} LogQueueFifo;
/* NOTE: this is inherently racy. If the LogQueue->lock is taken, then the
* race is limited to the changes in output_queue queue changes.
*
* In the output thread, this means that this can get race-free. In the
* input thread, the output_queue can change because of a
* log_queue_fifo_rewind_backlog().
*
*/
static void
iv_list_update_msg_size(LogQueueFifo *self, struct iv_list_head *head)
{
LogMessage *msg;
struct iv_list_head *ilh, *ilh2;
iv_list_for_each_safe(ilh, ilh2, head)
{
msg = iv_list_entry(ilh, LogMessageQueueNode, list)->msg;
log_queue_memory_usage_add(&self->super, log_msg_get_size(msg));
}
}
static gint64
log_queue_fifo_get_length(LogQueue *s)
{
LogQueueFifo *self = (LogQueueFifo *) s;
return self->wait_queue.len + self->output_queue.len;
}
static gint64
log_queue_fifo_get_non_flow_controlled_length(LogQueueFifo *self)
{
return self->wait_queue.non_flow_controlled_len + self->output_queue.non_flow_controlled_len;
}
gboolean
log_queue_fifo_is_empty_racy(LogQueue *s)
{
LogQueueFifo *self = (LogQueueFifo *) s;
gboolean has_message_in_queue = FALSE;
g_mutex_lock(&self->super.lock);
if (log_queue_fifo_get_length(s) > 0)
{
has_message_in_queue = TRUE;
}
else
{
gint i;
for (i = 0; i < self->num_input_queues && !has_message_in_queue; i++)
{
has_message_in_queue |= self->input_queues[i].finish_cb_registered;
}
}
g_mutex_unlock(&self->super.lock);
return !has_message_in_queue;
}
/* NOTE: this is inherently racy, can only be called if log processing is suspended (e.g. reload time) */
static gboolean
log_queue_fifo_keep_on_reload(LogQueue *s)
{
LogQueueFifo *self = (LogQueueFifo *) s;
return log_queue_fifo_get_length(s) > 0 || self->backlog_queue.len > 0;
}
static inline void
log_queue_fifo_drop_messages_from_input_queue(LogQueueFifo *self, InputQueue *input_queue, gint num_of_messages_to_drop)
{
LogPathOptions path_options = LOG_PATH_OPTIONS_INIT;
struct iv_list_head *item = input_queue->items.next;
for (gint dropped = 0; dropped < num_of_messages_to_drop;)
{
LogMessageQueueNode *node = iv_list_entry(item, LogMessageQueueNode, list);
item = item->next;
path_options.ack_needed = node->ack_needed;
path_options.flow_control_requested = node->flow_control_requested;
if (path_options.flow_control_requested)
continue;
iv_list_del(&node->list);
input_queue->len--;
log_queue_dropped_messages_inc(&self->super);
log_msg_free_queue_node(node);
LogMessage *msg = node->msg;
input_queue->non_flow_controlled_len--;
log_msg_drop(msg, &path_options, AT_PROCESSED);
dropped++;
}
msg_debug("Destination queue full, dropping messages",
evt_tag_int("log_fifo_size", self->log_fifo_size),
evt_tag_int("number_of_dropped_messages", num_of_messages_to_drop),
evt_tag_str("persist_name", self->super.persist_name));
}
static inline gboolean
log_queue_fifo_calculate_num_of_messages_to_drop(LogQueueFifo *self, InputQueue *input_queue,
gint *num_of_messages_to_drop)
{
/* since we're in the input thread, queue_len will be racy. It can
* increase due to log_queue_fifo_rewind_backlog() and can also decrease
* as items are removed from the output queue using log_queue_pop_head().
*
* The only reason we're using it here is to check for qoverflow
* overflows, however the only side-effect of the race (if lost) is that
* we would lose a couple of message too many or add some more messages to
* qoverflow than permitted by the user. Since if flow-control is used,
* the fifo size should be sized larger than the potential window sizes,
* otherwise we can lose messages anyway, this is not deemed a cost to
* justify proper locking in this case.
*/
gint queue_len = log_queue_fifo_get_non_flow_controlled_length(self);
guint16 input_queue_len = input_queue->non_flow_controlled_len;
gboolean drop_messages = queue_len + input_queue_len > self->log_fifo_size;
if (!drop_messages)
return FALSE;
/* NOTE: MAX is needed here to ensure that the lost race on queue_len
* doesn't result in n < 0 */
*num_of_messages_to_drop = input_queue_len - MAX(0, (self->log_fifo_size - queue_len));
return TRUE;
}
/* move items from the per-thread input queue to the lock-protected "wait" queue */
static void
log_queue_fifo_move_input_unlocked(LogQueueFifo *self, gint thread_index)
{
gint num_of_messages_to_drop;
gboolean drop_messages = log_queue_fifo_calculate_num_of_messages_to_drop(self, &self->input_queues[thread_index],
&num_of_messages_to_drop);
if (drop_messages)
{
/* slow path, the input thread's queue would overflow the queue, let's drop some messages */
log_queue_fifo_drop_messages_from_input_queue(self, &self->input_queues[thread_index], num_of_messages_to_drop);
}
log_queue_queued_messages_add(&self->super, self->input_queues[thread_index].len);
iv_list_update_msg_size(self, &self->input_queues[thread_index].items);
iv_list_splice_tail_init(&self->input_queues[thread_index].items, &self->wait_queue.items);
self->wait_queue.len += self->input_queues[thread_index].len;
self->wait_queue.non_flow_controlled_len += self->input_queues[thread_index].non_flow_controlled_len;
self->input_queues[thread_index].len = 0;
self->input_queues[thread_index].non_flow_controlled_len = 0;
}
/* move items from the per-thread input queue to the lock-protected
* "wait" queue, but grabbing locks first. This is registered as a
* callback to be called when the input worker thread finishes its
* job.
*/
static gpointer
log_queue_fifo_move_input(gpointer user_data)
{
LogQueueFifo *self = (LogQueueFifo *) user_data;
gint thread_index;
thread_index = main_loop_worker_get_thread_index();
g_assert(thread_index >= 0);
g_mutex_lock(&self->super.lock);
log_queue_fifo_move_input_unlocked(self, thread_index);
log_queue_push_notify(&self->super);
g_mutex_unlock(&self->super.lock);
self->input_queues[thread_index].finish_cb_registered = FALSE;
log_queue_unref(&self->super);
return NULL;
}
/* lock must be held */
static inline gboolean
_message_has_to_be_dropped(LogQueueFifo *self, const LogPathOptions *path_options)
{
return !path_options->flow_control_requested
&& log_queue_fifo_get_non_flow_controlled_length(self) >= self->log_fifo_size;
}
/**
* Assumed to be called from one of the input threads. If the thread_index
* cannot be determined, the item is put directly in the wait queue.
*
* Puts the message to the queue, and logs an error if it caused the
* queue to be full.
*
* It attempts to put the item to the per-thread input queue.
*
* NOTE: It consumes the reference passed by the caller.
**/
static void
log_queue_fifo_push_tail(LogQueue *s, LogMessage *msg, const LogPathOptions *path_options)
{
LogQueueFifo *self = (LogQueueFifo *) s;
gint thread_index;
LogMessageQueueNode *node;
thread_index = main_loop_worker_get_thread_index();
/* if this thread has an ID than the number of input queues we have (due
* to a config change), handle the load via the slow path */
if (thread_index >= self->num_input_queues)
thread_index = -1;
/* NOTE: we don't use high-water marks for now, as log_fetch_limit
* limits the number of items placed on the per-thread input queue
* anyway, and any sane number decreased the performance measurably.
*
* This means that per-thread input queues contain _all_ items that
* a single poll iteration produces. And once the reader is finished
* (either because the input is depleted or because of
* log_fetch_limit / window_size) the whole bunch is propagated to
* the "wait" queue.
*/
if (thread_index >= 0)
{
/* fastpath, use per-thread input FIFOs */
if (!self->input_queues[thread_index].finish_cb_registered)
{
/* this is the first item in the input FIFO, register a finish
* callback to make sure it gets moved to the wait_queue if the
* input thread finishes
* One reference should be held, while the callback is registered
* avoiding use-after-free situation
*/
main_loop_worker_register_batch_callback(&self->input_queues[thread_index].cb);
self->input_queues[thread_index].finish_cb_registered = TRUE;
log_queue_ref(&self->super);
}
log_msg_write_protect(msg);
node = log_msg_alloc_queue_node(msg, path_options);
iv_list_add_tail(&node->list, &self->input_queues[thread_index].items);
self->input_queues[thread_index].len++;
if (!path_options->flow_control_requested)
self->input_queues[thread_index].non_flow_controlled_len++;
log_msg_unref(msg);
return;
}
/* slow path, put the pending item and the whole input queue to the wait_queue */
g_mutex_lock(&self->super.lock);
if (_message_has_to_be_dropped(self, path_options))
{
log_queue_dropped_messages_inc(&self->super);
g_mutex_unlock(&self->super.lock);
log_msg_drop(msg, path_options, AT_PROCESSED);
msg_debug("Destination queue full, dropping message",
evt_tag_int("queue_len", log_queue_fifo_get_length(&self->super)),
evt_tag_int("log_fifo_size", self->log_fifo_size),
evt_tag_str("persist_name", self->super.persist_name));
return;
}
log_msg_write_protect(msg);
node = log_msg_alloc_queue_node(msg, path_options);
iv_list_add_tail(&node->list, &self->wait_queue.items);
self->wait_queue.len++;
if (!path_options->flow_control_requested)
self->wait_queue.non_flow_controlled_len++;
log_queue_push_notify(&self->super);
log_queue_queued_messages_inc(&self->super);
log_queue_memory_usage_add(&self->super, log_msg_get_size(msg));
g_mutex_unlock(&self->super.lock);
log_msg_unref(msg);
}
/*
* Can only run from the output thread.
*/
static inline void
_move_items_from_wait_queue_to_output_queue(LogQueueFifo *self)
{
/* slow path, output queue is empty, get some elements from the wait queue */
g_mutex_lock(&self->super.lock);
iv_list_splice_tail_init(&self->wait_queue.items, &self->output_queue.items);
self->output_queue.len = self->wait_queue.len;
self->output_queue.non_flow_controlled_len = self->wait_queue.non_flow_controlled_len;
self->wait_queue.len = 0;
self->wait_queue.non_flow_controlled_len = 0;
g_mutex_unlock(&self->super.lock);
}
/*
* Can only run from the output thread.
*/
static LogMessage *
log_queue_fifo_peek_head(LogQueue *s)
{
LogQueueFifo *self = (LogQueueFifo *) s;
LogMessageQueueNode *node;
LogMessage *msg = NULL;
if (self->output_queue.len == 0)
_move_items_from_wait_queue_to_output_queue(self);
if (self->output_queue.len == 0)
return NULL;
node = iv_list_entry(self->output_queue.items.next, LogMessageQueueNode, list);
msg = node->msg;
return msg;
}
/*
* Can only run from the output thread.
*
* NOTE: this returns a reference which the caller must take care to free.
*/
static LogMessage *
log_queue_fifo_pop_head(LogQueue *s, LogPathOptions *path_options)
{
LogQueueFifo *self = (LogQueueFifo *) s;
LogMessageQueueNode *node;
LogMessage *msg = NULL;
if (self->output_queue.len == 0)
_move_items_from_wait_queue_to_output_queue(self);
if (self->output_queue.len > 0)
{
node = iv_list_entry(self->output_queue.items.next, LogMessageQueueNode, list);
msg = node->msg;
path_options->ack_needed = node->ack_needed;
self->output_queue.len--;
if (!node->flow_control_requested)
self->output_queue.non_flow_controlled_len--;
iv_list_del_init(&node->list);
}
else
{
/* no items either on the wait queue nor the output queue.
*
* NOTE: the input queues may contain items even in this case,
* however we don't touch them here, they'll be migrated to the
* wait_queue once the input threads finish their processing (or
* the high watermark is reached). Also, they are unlocked, so
* no way to touch them safely.
*/
return NULL;
}
log_queue_queued_messages_dec(&self->super);
log_queue_memory_usage_sub(&self->super, log_msg_get_size(msg));
/* push to backlog */
log_msg_ref(msg);
iv_list_add_tail(&node->list, &self->backlog_queue.items);
self->backlog_queue.len++;
if (!node->flow_control_requested)
self->backlog_queue.non_flow_controlled_len++;
return msg;
}
/*
* Can only run from the output thread.
*/
static void
log_queue_fifo_ack_backlog(LogQueue *s, gint rewind_count)
{
LogQueueFifo *self = (LogQueueFifo *) s;
LogMessage *msg;
LogPathOptions path_options = LOG_PATH_OPTIONS_INIT;
gint pos;
for (pos = 0; pos < rewind_count && self->backlog_queue.len > 0; pos++)
{
LogMessageQueueNode *node;
node = iv_list_entry(self->backlog_queue.items.next, LogMessageQueueNode, list);
msg = node->msg;
iv_list_del(&node->list);
self->backlog_queue.len--;
if (!node->flow_control_requested)
self->backlog_queue.non_flow_controlled_len--;
path_options.ack_needed = node->ack_needed;
log_msg_ack(msg, &path_options, AT_PROCESSED);
log_msg_free_queue_node(node);
log_msg_unref(msg);
}
}
/*
* log_queue_rewind_backlog_all:
*
* Move items on our backlog back to our qoverflow queue. Please note that this
* function does not really care about qoverflow size, it has to put the backlog
* somewhere. The backlog is emptied as that will be filled if we send the
* items again.
*
* NOTE: this is assumed to be called from the output thread.
*/
static void
log_queue_fifo_rewind_backlog_all(LogQueue *s)
{
LogQueueFifo *self = (LogQueueFifo *) s;
iv_list_update_msg_size(self, &self->backlog_queue.items);
iv_list_splice_tail_init(&self->backlog_queue.items, &self->output_queue.items);
self->output_queue.len += self->backlog_queue.len;
self->output_queue.non_flow_controlled_len += self->backlog_queue.non_flow_controlled_len;
log_queue_queued_messages_add(&self->super, self->backlog_queue.len);
self->backlog_queue.len = 0;
self->backlog_queue.non_flow_controlled_len = 0;
}
static void
log_queue_fifo_rewind_backlog(LogQueue *s, guint rewind_count)
{
LogQueueFifo *self = (LogQueueFifo *) s;
guint pos;
if (rewind_count > self->backlog_queue.len)
rewind_count = self->backlog_queue.len;
for (pos = 0; pos < rewind_count; pos++)
{
LogMessageQueueNode *node = iv_list_entry(self->backlog_queue.items.prev, LogMessageQueueNode, list);
/*
* Because the message go to the backlog only in case of pop_head
* and pop_head add ack and ref when it pushes the message into the backlog
* The rewind must decrease the ack and ref too
*/
iv_list_del_init(&node->list);
iv_list_add(&node->list, &self->output_queue.items);
self->backlog_queue.len--;
self->output_queue.len++;
if (!node->flow_control_requested)
{
self->backlog_queue.non_flow_controlled_len--;
self->output_queue.non_flow_controlled_len++;
}
log_queue_queued_messages_inc(&self->super);
log_queue_memory_usage_add(&self->super, log_msg_get_size(node->msg));
}
}
static void
log_queue_fifo_free_queue(struct iv_list_head *q)
{
while (!iv_list_empty(q))
{
LogMessageQueueNode *node;
LogPathOptions path_options = LOG_PATH_OPTIONS_INIT;
LogMessage *msg;
node = iv_list_entry(q->next, LogMessageQueueNode, list);
iv_list_del(&node->list);
path_options.ack_needed = node->ack_needed;
msg = node->msg;
log_msg_free_queue_node(node);
log_msg_ack(msg, &path_options, AT_ABORTED);
log_msg_unref(msg);
}
}
static inline void
_register_counters(LogQueueFifo *self, gint stats_level, StatsClusterKeyBuilder *builder)
{
if (!builder)
return;
{
stats_cluster_key_builder_push(builder);
stats_cluster_key_builder_set_name(builder, "capacity");
self->metrics.capacity_sc_key = stats_cluster_key_builder_build_single(builder);
stats_cluster_key_builder_pop(builder);
}
{
stats_lock();
stats_register_counter(stats_level, self->metrics.capacity_sc_key, SC_TYPE_SINGLE_VALUE,
&self->metrics.capacity);
stats_unlock();
}
}
static void
_unregister_counters(LogQueueFifo *self)
{
{
stats_lock();
if (self->metrics.capacity_sc_key)
{
stats_unregister_counter(self->metrics.capacity_sc_key, SC_TYPE_SINGLE_VALUE,
&self->metrics.capacity);
stats_cluster_key_free(self->metrics.capacity_sc_key);
}
stats_unlock();
}
}
static void
log_queue_fifo_free(LogQueue *s)
{
LogQueueFifo *self = (LogQueueFifo *) s;
gint i;
for (i = 0; i < self->num_input_queues; i++)
{
g_assert(self->input_queues[i].finish_cb_registered == FALSE);
log_queue_fifo_free_queue(&self->input_queues[i].items);
}
log_queue_fifo_free_queue(&self->wait_queue.items);
log_queue_fifo_free_queue(&self->output_queue.items);
log_queue_fifo_free_queue(&self->backlog_queue.items);
_unregister_counters(self);
log_queue_free_method(s);
}
LogQueue *
log_queue_fifo_new(gint log_fifo_size, const gchar *persist_name, gint stats_level,
StatsClusterKeyBuilder *driver_sck_builder, StatsClusterKeyBuilder *queue_sck_builder)
{
LogQueueFifo *self;
gint max_threads = main_loop_worker_get_max_number_of_threads();
self = g_malloc0(sizeof(LogQueueFifo) + max_threads * sizeof(self->input_queues[0]));
if (queue_sck_builder)
{
stats_cluster_key_builder_push(queue_sck_builder);
stats_cluster_key_builder_set_name_prefix(queue_sck_builder, "memory_queue_");
}
log_queue_init_instance(&self->super, persist_name, stats_level, driver_sck_builder, queue_sck_builder);
self->super.type = log_queue_fifo_type;
self->super.get_length = log_queue_fifo_get_length;
self->super.is_empty_racy = log_queue_fifo_is_empty_racy;
self->super.keep_on_reload = log_queue_fifo_keep_on_reload;
self->super.push_tail = log_queue_fifo_push_tail;
self->super.pop_head = log_queue_fifo_pop_head;
self->super.peek_head = log_queue_fifo_peek_head;
self->super.ack_backlog = log_queue_fifo_ack_backlog;
self->super.rewind_backlog = log_queue_fifo_rewind_backlog;
self->super.rewind_backlog_all = log_queue_fifo_rewind_backlog_all;
self->super.free_fn = log_queue_fifo_free;
self->num_input_queues = max_threads;
for (gint i = 0; i < self->num_input_queues; i++)
{
INIT_IV_LIST_HEAD(&self->input_queues[i].items);
worker_batch_callback_init(&self->input_queues[i].cb);
self->input_queues[i].cb.func = log_queue_fifo_move_input;
self->input_queues[i].cb.user_data = self;
}
INIT_IV_LIST_HEAD(&self->wait_queue.items);
INIT_IV_LIST_HEAD(&self->output_queue.items);
INIT_IV_LIST_HEAD(&self->backlog_queue.items);
self->log_fifo_size = log_fifo_size;
_register_counters(self, stats_level, queue_sck_builder);
stats_counter_set(self->metrics.capacity, self->log_fifo_size);
if (queue_sck_builder)
stats_cluster_key_builder_pop(queue_sck_builder);
return &self->super;
}
QueueType
log_queue_fifo_get_type(void)
{
return log_queue_fifo_type;
}
|