1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
/*****************************************************************************
Licensed to Accellera Systems Initiative Inc. (Accellera) under one or
more contributor license agreements. See the NOTICE file distributed
with this work for additional information regarding copyright ownership.
Accellera licenses this file to you under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with the
License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing
permissions and limitations under the License.
*****************************************************************************/
/*****************************************************************************
fft.cpp - This is the implementation file for the synchronous process "fft".
Original Author: Rashmi Goswami, Synopsys, Inc.
*****************************************************************************/
/*****************************************************************************
MODIFICATION LOG - modifiers, enter your name, affiliation, date and
changes you are making here.
Name, Affiliation, Date:
Description of Modification:
*****************************************************************************/
/* This is the implementation file for the synchronous process "fft" */
#include "systemc.h"
#include "fft.h"
//Function for butterfly computation
void func_butterfly
( const sc_int<16>& w_real /* snps width 16 */,
const sc_int<16>& w_imag /* snps width 16 */,
const sc_int<16>& real1_in /* snps width 16 */,
const sc_int<16>& imag1_in /* snps width 16 */,
const sc_int<16>& real2_in /* snps width 16 */,
const sc_int<16>& imag2_in /* snps width 16 */,
sc_int<16>& real1_out /* snps width 16 */,
sc_int<16>& imag1_out /* snps width 16 */,
sc_int<16>& real2_out /* snps width 16 */,
sc_int<16>& imag2_out /* snps width 16 */
)
{
// Variable declarations
sc_int<17> tmp_real1;
sc_int<17> tmp_imag1;
sc_int<17> tmp_real2;
sc_int<17> tmp_imag2;
sc_int<34> tmp_real3;
sc_int<34> tmp_imag3;
// Begin Computation
tmp_real1 = real1_in + real2_in;
// <s,6,10> = <s,5,10> + <s,5,10>
tmp_imag1 = imag1_in + imag2_in;
// <s,6,10> = <s,5,10> - <s,5,10>
tmp_real2 = real1_in - real2_in;
// <s,6,10> = <s,5,10> - <s,5,10>
tmp_imag2 = imag1_in - imag2_in;
// <s,13,20> = <s,6,10>*<s,5,10> - <s,6,10>*<s,5,10>
tmp_real3 = tmp_real2*w_real - tmp_imag2*w_imag;
// <s,13,20> = <s,6,10>*<s,5,10> - <s,6,10>*<s,5,10>
tmp_imag3 = tmp_real2*w_imag + tmp_imag2*w_real;
// assign the sign-bit(MSB)
real1_out[15] = tmp_real1[16];
imag1_out[15] = tmp_imag1[16];
// assign the rest of the bits
real1_out.range(14,0) = tmp_real1.range(14,0);
imag1_out.range(14,0) = tmp_imag1.range(14,0);
// assign the sign-bit(MSB)
real2_out[15] = tmp_real3[33];
imag2_out[15] = tmp_imag3[33];
// assign the rest of the bits
real2_out.range(14,0) = tmp_real3.range(24,10);
imag2_out.range(14,0) = tmp_imag3.range(24,10);
} // end func_butterfly
void fft::entry()
{
// Variable Declarations
sc_int<16> real[16];
sc_int<16> imag[16];
sc_int<16> tmp_real;
sc_int<16> tmp_imag;
short index;
sc_int<6> N;
sc_int<4> M;
sc_int<6> len;
sc_int<16> W_real[7];
sc_int<16> W_imag[7];
sc_int<16> w_real;
sc_int<16> w_imag;
sc_int<16> w_rec_real;
sc_int<16> w_rec_imag;
sc_int<32> w_temp1;
sc_int<32> w_temp2;
sc_int<32> w_temp3;
sc_int<32> w_temp4;
sc_int<33> w_temp5;
sc_int<33> w_temp6;
sc_int<16> real1_in;
sc_int<16> imag1_in;
sc_int<16> real2_in;
sc_int<16> imag2_in;
sc_int<16> real1_out;
sc_int<16> imag1_out;
sc_int<16> real2_out;
sc_int<16> imag2_out;
sc_int<4> stage;
short i;
short j;
short index2;
short windex;
short incr;
while(true)
{ data_req.write(false);
data_ready.write(false);
index = 0;
wait();
//Read in the Sample values
cout << endl << "Reading in the samples..." << endl;
while( index < 16 )
{
data_req.write(true);
do { wait(); } while ( !(data_valid == true) );
tmp_real = in_real.read();
tmp_imag = in_imag.read();
real[index] = tmp_real;
imag[index] = tmp_imag;
index++;
data_req.write(false);
wait();
}
index = 0;
// Initialize
M = 4; N = 16;
len = N >> 1;
cout << "Computing..." << endl;
// Calculate the W-values recursively
// <'s'/'u',m,n>: is used in comments to denote a fixed point representation
// 's'- signed, 'u'- unsigned, m - no. of integer bits, n - no. of fractional bits
// theta = 8.0*atan(1.0)/N; theta = 22.5 degree
// w_real = cos(theta) = 0.92 (000000.1110101110) <s,5,10>
w_real = 942;
// w_imag = -sin(theta) = -0.38(111111.1001111010) <s,5,10>
w_imag = -389;
// w_rec_real = 1(0000001.0000000000)
w_rec_real = 1024;
// w_rec_real = 0(000000.0000000000)
w_rec_imag = 0;
unsigned short w_index;
w_index = 0;
while(w_index < 7)
{
// <s,11,20> = <s,5,10> * <s,5,10>
w_temp1 = w_rec_real*w_real;
w_temp2 = w_rec_imag*w_imag;
// <s,11,20> = <s,5,10> * <s,5,10>
w_temp3 = w_rec_real*w_imag;
w_temp4 = w_rec_imag*w_real;
// <s,6,10> = <s,5,10> - <s,5,10>
w_temp5 = w_temp1 - w_temp2;
// <s,6,10> = <s,5,10> + <s,5,10>
w_temp6 = w_temp3 + w_temp4;
// assign the sign-bit(MSB)
W_real[w_index][15] = w_temp5[32];
W_imag[w_index][15] = w_temp6[32];
// assign the rest of the bits
W_real[w_index].range(14,0) = w_temp5.range(24,10);
W_imag[w_index].range(14,0) = w_temp6.range(24,10);
// update w_rec.. values for the next iteration
w_rec_real = W_real[w_index];
w_rec_imag = W_imag[w_index];
w_index++;
}
//////////////////////////////////////////////////////////////////////////
/// Computation - 1D Complex DFT In-Place DIF Computation Algorithm ////
//////////////////////////////////////////////////////////////////////////
stage = 0;
len = N;
incr = 1;
while (stage < M)
{
len = len >> 1;
//First Iteration : Simple calculation, with no multiplies
i = 0;
while(i < (short)N)
{
index = i; index2 = i + (short)len;
tmp_real = real[index] + real[index2];
tmp_imag = imag[index] + imag[index2];
real[index2] = (real[index] - real[index2]);
imag[index2] = (imag[index] - imag[index2]);
real[index] = tmp_real;
imag[index] = tmp_imag;
i = (short)(i + (len << 1));
}
//Remaining Iterations: Use Stored W
j = 1; windex = incr - 1;
// This loop executes N/2 times at the first stage, N/2 times at the second.. once at last stage
while (j < (short)len)
{
i = j;
while (i < (short)N)
{
index = i;
index2 = i + (short)len;
// Read in the data and twiddle factors
w_real = W_real[windex];
w_imag = W_imag[windex];
real1_in = real[index];
imag1_in = imag[index];
real2_in = real[index2];
imag2_in = imag[index2];
// Call butterfly computation function
func_butterfly(w_real, w_imag, real1_in, imag1_in, real2_in, imag2_in, real1_out, imag1_out, real2_out, imag2_out);
// Store back the results
real[index] = real1_out;
imag[index] = imag1_out;
real[index2] = real2_out;
imag[index2] = imag2_out;
i = (short)(i + (len << 1));
}
windex = windex + incr;
j++;
}
stage++;
incr = incr << 1;
}
//////////////////////////////////////////////////////////////////////////
//Writing out the normalized transform values in bit reversed order
//////////////////////////////////////////////////////////////////////////
sc_uint<4> bits_i;
sc_uint<4> bits_index;
sc_int<16> real1;
sc_int<16> imag1;
bits_i = 0;
bits_index = 0;
i = 0;
cout << "Writing the transform values..." << endl;
while( i < 16)
{
bits_i = i;
bits_index[3]= bits_i[0];
bits_index[2]= bits_i[1];
bits_index[1]= bits_i[2];
bits_index[0]= bits_i[3];
index = (short)bits_index;
real1 = real[index];
imag1 = imag[index];
out_real.write(real1);
out_imag.write(imag1);
data_ready.write(true);
do { wait(); } while ( !(data_ack == true) );
data_ready.write(false);
i++;
wait();
}
index = 0;
cout << "Done..." << endl;
}
}// end entry() function
|