1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
|
/*****************************************************************************
Licensed to Accellera Systems Initiative Inc. (Accellera) under one or
more contributor license agreements. See the NOTICE file distributed
with this work for additional information regarding copyright ownership.
Accellera licenses this file to you under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with the
License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing
permissions and limitations under the License.
*****************************************************************************/
/*****************************************************************************
rsa.cpp -- An implementation of the RSA public-key cipher. The
following implementation is based on the one given in Cormen et
al., Inroduction to Algorithms, 1991. I'll refer to this book as
CLR because of its authors. This implementation shows the usage of
arbitrary precision types of SystemC. That is, these types in
SystemC can be used to implement algorithmic examples regarding
arbitrary precision integers. The algorithms used are not the most
efficient ones; however, they are intended for explanatory
purposes, so they are simple and perform their job correctly.
Below, NBITS shows the maximum number of bits in n, the variable
that is a part of both the public and secret keys, P and S,
respectively. NBITS can be made larger at the expense of longer
running time. For example, CLR mentions that the RSA cipher uses
large primes that contain approximately 100 decimal digits. This
means that NBITS should be set to approximately 560.
Some background knowledge: A prime number p > 1 is an integer that
has only two divisiors, 1 and p itself. For example, 2, 3, 5, 7,
and 11 are all primes. If p is not a prime number, it is called a
composite number. If we are given two primes p and q, it is easy
to find their product p * q; however, if we are given a number m
which happens to be the product of two primes p and q that we do
not know, it is very difficult to find p and q if m is very large,
i.e., it is very difficult to factor m. The RSA public-key
cryptosystem is based on this fact. Internally, we use the
Miller-Rabin randomized primality test to deal with primes. More
information can be obtained from pp. 831-836 in CLR, the first
edition.
Original Author: Ali Dasdan, Synopsys, Inc.
*****************************************************************************/
/*****************************************************************************
MODIFICATION LOG - modifiers, enter your name, affiliation, date and
changes you are making here.
Name, Affiliation, Date:
Description of Modification:
*****************************************************************************/
#include <stdlib.h>
#include <sys/types.h>
#include <time.h>
#include <stdlib.h> // drand48, srand48
#include "systemc.h"
#define DEBUG_SYSTEMC // #undef this to disable assertions.
// NBITS is the number of bits in n of public and secret keys P and
// S. HALF_NBITS is the number of bits in p and q, which are the prime
// factors of n.
#define NBITS 250
#define HALF_NBITS ( NBITS / 2 )
// +2 is for the format specifier '0b' to make the string binary.
#define STR_SIZE ( NBITS + 2 )
#define HALF_STR_SIZE ( HALF_NBITS + 2 )
typedef sc_bigint<NBITS> bigint;
// Return the absolute value of x.
inline
bigint
abs_val( const sc_signed& x )
{
return ( x < 0 ? -x : x );
}
// Initialize the random number generator. If seed == -1, the
// generator will be initialized with the system time. If not, it will
// be initialized with the given seed. This way, an experiment with
// random numbers becomes reproducible.
inline
long
randomize( int seed )
{
long in_seed; // time_t is long.
in_seed = ( seed <= 0 ? static_cast<long>(time( 0 )) : seed );
srand( ( unsigned ) in_seed );
return in_seed;
}
// Flip a coin with probability p.
inline
bool
flip( double p )
{
// rand() produces an integer between 0 and RAND_MAX so
// rand() / RAND_MAX is a number between 0 and 1,
// which is required to compare with p.
return ( rand() < ( int ) ( p * RAND_MAX ) );
}
// Randomly generate a bit string with nbits bits. str has a length
// of nbits + 1. This function is used to generate random messages to
// process.
inline
void
rand_bitstr( char *str, int nbits )
{
assert( nbits >= 4 );
str[ 0 ] = '0';
str[ 1 ] = 'b';
str[ 2 ] = '0'; // Sign for positive numbers.
for ( int i = 3; i < nbits; ++i )
str[ i ] = ( flip( 0.5 ) == true ? '1' : '0' );
str[ nbits ] = '\0';
}
// Generate "111..111" with nbits bits for masking.
// str has a length of nbits + 1.
inline
void
max_bitstr( char *str, int nbits )
{
assert( nbits >= 4 );
str[ 0 ] = '0';
str[ 1 ] = 'b';
str[ 2 ] = '0'; // Sign for positive numbers.
for ( int i = 3; i < nbits; ++i )
str[ i ] = '1';
str[ nbits ] = '\0';
}
// Return a positive remainder.
inline
bigint
ret_pos( const bigint& x, const bigint& n )
{
if ( x < 0 )
return x + n;
return x;
}
// Compute the greatest common divisor ( gcd ) of a and b. This is
// Euclid's algorithm. This algorithm is at least 2,300 years old! The
// non-recursive version of this algorithm is not as elegant.
bigint
gcd( const bigint& a, const bigint& b )
{
if ( b == 0 )
return a;
return gcd( b, a % b );
}
// Compute d, x, and y such that d = gcd( a, b ) = ax + by. x and y can
// be zero or negative. This algorithm is also Euclid's algorithm but
// it is extended to also find x and y. Recall that the existence of x
// and y is guaranteed by Euclid's algorithm.
void
euclid( const bigint& a, const bigint& b, bigint& d, bigint& x, bigint& y )
{
if ( b != 0 ) {
euclid( b, a % b, d, x, y );
bigint tmp = x;
x = y;
y = tmp - ( a / b ) * y;
}
else {
d = a;
x = 1;
y = 0;
}
}
// Return d = a^b % n, where ^ represents exponentiation.
inline
bigint
modular_exp( const bigint& a, const bigint& b, const bigint& n )
{
bigint d = 1;
for ( int i = b.length() - 1; i >= 0; --i )
{
d = ( d * d ) % n;
if ( b[ i ] )
d = ( d * a ) % n;
}
return ret_pos( d, n );
}
// Return the multiplicative inverse of a, modulo n, when a and n are
// relatively prime. Recall that x is a multiplicative inverse of a,
// modulo n, if a * x = 1 ( mod n ).
inline
bigint
inverse( const bigint& a, const bigint& n )
{
bigint d, x, y;
euclid( a, n, d, x, y );
assert( d == 1 );
x %= n;
return ret_pos( x, n );
}
// Find a small odd integer a that is relatively prime to n. I do not
// know an efficient algorithm to do that but the loop below seems to
// work; it usually iterates a few times. Recall that a is relatively
// prime to n if their only common divisor is 1, i.e., gcd( a, n ) ==
// 1.
inline
bigint
find_rel_prime( const bigint& n )
{
bigint a = 3;
while ( true ) {
if ( gcd( a, n ) == 1 )
break;
a += 2;
#ifdef DEBUG_SYSTEMC
assert( a < n );
#endif
}
return a;
}
// Return true if and only if a is a witness to the compositeness of
// n, i.e., a can be used to prove that n is composite.
inline
bool
witness( const bigint& a, const bigint& n )
{
bigint n_minus1 = n - 1;
bigint x;
bigint d = 1;
// Compute d = a^( n-1 ) % n.
for ( int i = n.length() - 1; i >= 0; --i )
{
// Sun's SC5 bug when compiling optimized version
// makes the wrong assignment if abs_val() is inlined
//x = (sc_signed)d<0?-(sc_signed)d:(sc_signed)d;//abs_val( d );
if(d<0)
{
x = -d;
assert(x==-d);
}
else
{
x = d;
assert(x==d);
}
d = ( d * d ) % n;
// x is a nontrivial square root of 1 modulo n ==> n is composite.
if ( ( abs_val( d ) == 1 ) && ( x != 1 ) && ( x != n_minus1 ) )
return true;
if ( n_minus1[ i ] )
d = ( d * a ) % n;
}
// d = a^( n-1 ) % n != 1 ==> n is composite.
if ( abs_val( d ) != 1 )
return true;
return false;
}
// Check to see if n has any small divisors. For small numbers, we do
// not have to run the Miller-Rabin primality test. We define "small"
// to be less than 1023. You can change it if necessary.
inline
bool
div_test( const bigint& n )
{
int limit;
if ( n < 1023 )
limit = n.to_int() - 2;
else
limit = 1023;
for ( int i = 3; i <= limit; i += 2 ) {
if ( n % i == 0 )
return false; // n is composite.
}
return true; // n may be prime.
}
// Return true if n is almost surely prime, return false if n is
// definitely composite. This test, called the Miller-Rabin primality
// test, errs with probaility at most 2^(-s). CLR suggests s = 50 for
// any imaginable application, and s = 3 if we are trying to find
// large primes by applying miller_rabin to randomly chosen large
// integers. Even though we are doing the latter here, we will still
// choose s = 50. The probability of failure is at most
// 0.00000000000000088817, a pretty small number.
inline
bool
miller_rabin( const bigint& n )
{
if ( n <= 2 )
return false;
if ( ! div_test( n ) )
return false;
char str[ STR_SIZE + 1 ];
int s = 50;
for ( int j = 1; j <= s; ++j ) {
// Choose a random number.
rand_bitstr( str, STR_SIZE );
// Set a to the chosen number.
bigint a = str;
// Make sure that a is in [ 1, n - 1 ].
a = ( a % ( n - 1 ) ) + 1;
// Check to see if a is a witness.
if ( witness( a, n ) )
return false; // n is definitely composite.
}
return true; // n is almost surely prime.
}
// Return a randomly generated, large prime number using the
// Miller-Rabin primality test.
inline
bigint
find_prime( const bigint& r )
{
char p_str[ HALF_STR_SIZE + 1 ];
rand_bitstr( p_str, HALF_STR_SIZE );
p_str[ HALF_STR_SIZE - 1 ] = '1'; // Force p to be an odd number.
bigint p = p_str;
#ifdef DEBUG_SYSTEMC
assert( ( p > 0 ) && ( p % 2 == 1 ) );
#endif
// p is randomly determined. Now, we'll look for a prime in the
// vicinity of p. By the prime number theorem, executing the
// following loop approximately ln ( 2^NBITS ) iterations should
// find a prime.
#ifdef DEBUG_SYSTEMC
// A very large counter to check against infinite loops.
sc_bigint<NBITS> niter = 0;
#endif
#if defined(SC_BIGINT_CONFIG_HOLLOW) // Remove when we fix hollow support!!
while ( ! miller_rabin( p ) ) {
p = ( p + 2 ) % r;
#else
size_t increment;
for ( increment = 0; increment < 100000 && !miller_rabin( p ); ++increment ) {
p = ( p + 2 ) % r;
#endif
#ifdef DEBUG_SYSTEMC
assert( ++niter > 0 );
#endif
}
return p;
}
// Encode or cipher the message in msg using the RSA public key P=( e, n ).
inline
bigint
cipher( const bigint& msg, const bigint& e, const bigint& n )
{
return modular_exp( msg, e, n );
}
// Dencode or decipher the message in msg using the RSA secret key S=( d, n ).
inline
bigint
decipher( const bigint& msg, const bigint& d, const bigint& n )
{
return modular_exp( msg, d, n );
}
// The RSA cipher.
inline
void
rsa( int seed )
{
// Generate all 1's in r.
char r_str[ HALF_STR_SIZE + 1 ];
max_bitstr( r_str, HALF_STR_SIZE );
bigint r = r_str;
#ifdef DEBUG_SYSTEMC
assert( r > 0 );
#endif
// Initialize the random number generator.
cout << "\nRandom number generator seed = " << randomize( seed ) << endl;
cout << endl;
// Find two large primes p and q.
bigint p = find_prime( r );
bigint q = find_prime( r );
#ifdef DEBUG_SYSTEMC
assert( ( p > 0 ) && ( q > 0 ) );
#endif
// Compute n and ( p - 1 ) * ( q - 1 ) = m.
bigint n = p * q;
bigint m = ( p - 1 ) * ( q - 1 );
#ifdef DEBUG_SYSTEMC
assert( ( n > 0 ) && ( m > 0 ) );
#endif
// Find a small odd integer e that is relatively prime to m.
bigint e = find_rel_prime( m );
#ifdef DEBUG_SYSTEMC
assert( e > 0 );
#endif
// Find the multiplicative inverse d of e, modulo m.
bigint d = inverse( e, m );
#ifdef DEBUG_SYSTEMC
assert( d > 0 );
#endif
// Output public and secret keys.
cout << "RSA public key P: P=( e, n )" << endl;
cout << "e = " << e << endl;
cout << "n = " << n << endl;
cout << endl;
cout << "RSA secret key S: S=( d, n )" << endl;
cout << "d = " << d << endl;
cout << "n = " << n << endl;
cout << endl;
// Cipher and decipher a randomly generated message msg.
char msg_str[ STR_SIZE + 1 ];
rand_bitstr( msg_str, STR_SIZE );
bigint msg = msg_str;
msg %= n; // Make sure msg is smaller than n. If larger, this part
// will be a block of the input message.
#ifdef DEBUG_SYSTEMC
assert( msg > 0 );
#endif
cout << "Message to be ciphered = " << endl;
cout << msg << endl;
bigint msg2 = cipher( msg, e, n );
cout << "\nCiphered message = " << endl;
cout << msg2 << endl;
msg2 = decipher( msg2, d, n );
cout << "\nDeciphered message = " << endl;
cout << msg2 << endl;
// Make sure that the original message is recovered.
if ( msg == msg2 ) {
cout << "\nNote that the original message == the deciphered message, " << endl;
cout << "showing that this algorithm and implementation work correctly.\n" << endl;
}
else {
// This case is unlikely.
cout << "\nNote that the original message != the deciphered message, " << endl;
cout << "showing that this implementation works incorrectly.\n" << endl;
}
return;
}
int sc_main( int argc, char *argv[] )
{
if ( argc <= 1 )
rsa( -1 );
else
rsa( atoi( argv[ 1 ] ) );
return 0;
}
// End of file
|