1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
|
/*****************************************************************************
Licensed to Accellera Systems Initiative Inc. (Accellera) under one or
more contributor license agreements. See the NOTICE file distributed
with this work for additional information regarding copyright ownership.
Accellera licenses this file to you under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with the
License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing
permissions and limitations under the License.
*****************************************************************************/
/*****************************************************************************
simple_bus.cpp : The bus.
The main_action process is active at falling clock edge.
Handling of the requests. A request can result in
different requests to slaves. These are atomic requests
and cannot be interrupted. A slave can take several
cycles to complete: each time the request has to be
re-issued to the slave. Once the slave transaction
is completed, the m_current_request is cleared, and
the request form is updated (address+=4, data++).
When m_current_request is clear, the next request is
selected. This can be the same one, if the transfer is
not completed (burst-mode), or it can be a request with
a higher priority. Intrusion to a non-locked burst-mode
transaction is possible.
When a transaction sets a lock, then the corresponding
field in the request is set to SIMPLE_BUS_LOCK_SET. If
the locked transaction is granted by the arbiter for the
first time, the lock is set to SIMPLE_BUS_LOCK_GRANTED.
At the end of the transaction, the lock is set to
SIMPLE_BUS_LOCK_SET. If now a new locked request is made,
with the same priority, the status of the lock is set
to SIMPLE_BUS_LOCK_GRANTED, and the arbiter will pick
this transaction to be the best. If the locked trans-
action was not selected by the arbiter in the first
round (request with higher priority preceeded), then the
lock is not set. After the completion of the transaction,
the lock is set from SIMPLE_BUS_LOCK_SET (set during the
bus-interface function), to SIMPLE_BUS_LOCK_NO.
The bus is derived from the following interfaces, and
contains the implementation of these:
- blocking : burst_read/burst_write
- non-blocking : read/write/get_status
- direct : direct_read/direct_write
Original Author: Ric Hilderink, Synopsys, Inc., 2001-10-11
*****************************************************************************/
/*****************************************************************************
MODIFICATION LOG - modifiers, enter your name, affiliation, date and
changes you are making here.
Name, Affiliation, Date:
Description of Modification:
*****************************************************************************/
#include "simple_bus.h"
void simple_bus::end_of_elaboration()
{
// perform a static check for overlapping memory areas of the slaves
bool no_overlap;
for (int i = 1; i < slave_port.size(); ++i) {
simple_bus_slave_if *slave1 = slave_port[i];
for (int j = 0; j < i; ++j) {
simple_bus_slave_if *slave2 = slave_port[j];
no_overlap = ( slave1->end_address() < slave2->start_address() ) ||
( slave1->start_address() > slave2->end_address() );
if ( !no_overlap ) {
sb_fprintf(stdout,"Error: overlapping address spaces of 2 slaves : \n");
sb_fprintf(stdout,"slave %i : %0X..%0X\n",i,slave1->start_address(),slave1->end_address());
sb_fprintf(stdout,"slave %i : %0X..%0X\n",j,slave2->start_address(),slave2->end_address());
exit(0);
}
}
}
}
//----------------------------------------------------------------------------
//-- process
//----------------------------------------------------------------------------
void simple_bus::main_action()
{
// m_current_request is cleared after the slave is done with a
// single data transfer. Burst requests require the arbiter to
// select the request again.
if (!m_current_request)
m_current_request = get_next_request();
else
// monitor slave wait states
if (m_verbose)
sb_fprintf(stdout, "%s SLV [%d]\n", sc_time_stamp().to_string().c_str(),
m_current_request->address);
if (m_current_request)
handle_request();
if (!m_current_request)
clear_locks();
}
//----------------------------------------------------------------------------
//-- direct BUS interface
//----------------------------------------------------------------------------
bool simple_bus::direct_read(int *data, unsigned int address)
{
if (address%4 != 0 ) {// address not word alligned
sb_fprintf(stdout, " BUS ERROR --> address %04X not word alligned\n",address);
return false;
}
simple_bus_slave_if *slave = get_slave(address);
if (!slave) return false;
return slave->direct_read(data, address);
}
bool simple_bus::direct_write(int *data, unsigned int address)
{
if (address%4 != 0 ) {// address not word alligned
sb_fprintf(stdout, " BUS ERROR --> address %04X not word alligned\n",address);
return false;
}
simple_bus_slave_if *slave = get_slave(address);
if (!slave) return false;
return slave->direct_write(data, address);
}
//----------------------------------------------------------------------------
//-- non-blocking BUS interface
//----------------------------------------------------------------------------
void simple_bus::read(unsigned int unique_priority
, int *data
, unsigned int address
, bool lock)
{
if (m_verbose)
sb_fprintf(stdout, "%s %s : read(%d) @ %x\n",
sc_time_stamp().to_string().c_str(), name(), unique_priority, address);
simple_bus_request *request = get_request(unique_priority);
// abort when the request is still not finished
sc_assert((request->status == SIMPLE_BUS_OK) ||
(request->status == SIMPLE_BUS_ERROR));
request->do_write = false; // we are reading
request->address = address;
request->end_address = address;
request->data = data;
if (lock)
request->lock = (request->lock == SIMPLE_BUS_LOCK_SET) ?
SIMPLE_BUS_LOCK_GRANTED : SIMPLE_BUS_LOCK_SET;
request->status = SIMPLE_BUS_REQUEST;
}
void simple_bus::write(unsigned int unique_priority
, int *data
, unsigned int address
, bool lock)
{
if (m_verbose)
sb_fprintf(stdout, "%s %s : write(%d) @ %x\n",
sc_time_stamp().to_string().c_str(), name(), unique_priority, address);
simple_bus_request *request = get_request(unique_priority);
// abort when the request is still not finished
sc_assert((request->status == SIMPLE_BUS_OK) ||
(request->status == SIMPLE_BUS_ERROR));
request->do_write = true; // we are writing
request->address = address;
request->end_address = address;
request->data = data;
if (lock)
request->lock = (request->lock == SIMPLE_BUS_LOCK_SET) ?
SIMPLE_BUS_LOCK_GRANTED : SIMPLE_BUS_LOCK_SET;
request->status = SIMPLE_BUS_REQUEST;
}
simple_bus_status simple_bus::get_status(unsigned int unique_priority)
{
return get_request(unique_priority)->status;
}
//----------------------------------------------------------------------------
//-- blocking BUS interface
//----------------------------------------------------------------------------
simple_bus_status simple_bus::burst_read(unsigned int unique_priority
, int *data
, unsigned int start_address
, unsigned int length
, bool lock)
{
if (m_verbose)
{
sb_fprintf(stdout, "%s %s : burst_read(%d) @ %x\n",
sc_time_stamp().to_string().c_str(), name(), unique_priority,
start_address);
}
simple_bus_request *request = get_request(unique_priority);
request->do_write = false; // we are reading
request->address = start_address;
request->end_address = start_address + (length-1)*4;
request->data = data;
if (lock)
request->lock = (request->lock == SIMPLE_BUS_LOCK_SET) ?
SIMPLE_BUS_LOCK_GRANTED : SIMPLE_BUS_LOCK_SET;
request->status = SIMPLE_BUS_REQUEST;
wait(request->transfer_done);
wait(clock->posedge_event());
return request->status;
}
simple_bus_status simple_bus::burst_write(unsigned int unique_priority
, int *data
, unsigned int start_address
, unsigned int length
, bool lock)
{
if (m_verbose)
sb_fprintf(stdout, "%s %s : burst_write(%d) @ %x\n",
sc_time_stamp().to_string().c_str(), name(), unique_priority,
start_address);
simple_bus_request *request = get_request(unique_priority);
request->do_write = true; // we are writing
request->address = start_address;
request->end_address = start_address + (length-1)*4;
request->data = data;
if (lock)
request->lock = (request->lock == SIMPLE_BUS_LOCK_SET) ?
SIMPLE_BUS_LOCK_GRANTED : SIMPLE_BUS_LOCK_SET;
request->status = SIMPLE_BUS_REQUEST;
wait(request->transfer_done);
wait(clock->posedge_event());
return request->status;
}
//----------------------------------------------------------------------------
//-- BUS methods:
//
// handle_request() : performs atomic bus-to-slave request
// get_request() : BUS-interface: gets the request form of given
// priority
// get_next_request() : returns a valid request out of the list of
// pending requests
// clear_locks() : downgrade the lock status of the requests once
// the transfer is done
//----------------------------------------------------------------------------
void simple_bus::handle_request()
{
if (m_verbose)
sb_fprintf(stdout, "%s %s Handle Slave(%d)\n",
sc_time_stamp().to_string().c_str(), name(),
m_current_request->priority);
m_current_request->status = SIMPLE_BUS_WAIT;
simple_bus_slave_if *slave = get_slave(m_current_request->address);
if ((m_current_request->address)%4 != 0 ) {// address not word alligned
sb_fprintf(stdout, " BUS ERROR --> address %04X not word alligned\n",m_current_request->address);
m_current_request->status = SIMPLE_BUS_ERROR;
m_current_request = (simple_bus_request *)0;
return;
}
if (!slave) {
sb_fprintf(stdout, " BUS ERROR --> no slave for address %04X \n",m_current_request->address);
m_current_request->status = SIMPLE_BUS_ERROR;
m_current_request = (simple_bus_request *)0;
return;
}
simple_bus_status slave_status = SIMPLE_BUS_OK;
if (m_current_request->do_write)
slave_status = slave->write(m_current_request->data,
m_current_request->address);
else
slave_status = slave->read(m_current_request->data,
m_current_request->address);
if (m_verbose)
sb_fprintf(stdout, " --> status=(%s)\n", simple_bus_status_str[slave_status]);
switch(slave_status)
{
case SIMPLE_BUS_ERROR:
m_current_request->status = SIMPLE_BUS_ERROR;
m_current_request->transfer_done.notify();
m_current_request = (simple_bus_request *)0;
break;
case SIMPLE_BUS_OK:
m_current_request->address+=4; //next word (byte addressing)
m_current_request->data++;
if (m_current_request->address > m_current_request->end_address)
{
// burst-transfer (or single transfer) completed
m_current_request->status = SIMPLE_BUS_OK;
m_current_request->transfer_done.notify();
m_current_request = (simple_bus_request *)0;
}
else
{ // more data to transfer, but the (atomic) slave transfer is done
m_current_request = (simple_bus_request *)0;
}
break;
case SIMPLE_BUS_WAIT:
// the slave is still processing: no clearance of the current request
break;
default:
break;
}
}
simple_bus_slave_if *simple_bus::get_slave(unsigned int address)
{
for (int i = 0; i < slave_port.size(); ++i)
{
simple_bus_slave_if *slave = slave_port[i];
if ((slave->start_address() <= address) &&
(address <= slave->end_address()))
return slave;
}
return (simple_bus_slave_if *)0;
}
simple_bus_request * simple_bus::get_request(unsigned int priority)
{
simple_bus_request *request = (simple_bus_request *)0;
for (unsigned int i = 0; i < m_requests.size(); ++i)
{
request = m_requests[i];
if ((request) &&
(request->priority == priority))
return request;
}
request = new simple_bus_request;
request->priority = priority;
m_requests.push_back(request);
return request;
}
simple_bus_request * simple_bus::get_next_request()
{
// the slave is done with its action, m_current_request is
// empty, so go over the bag of request-forms and compose
// a set of likely requests. Pass it to the arbiter for the
// final selection
simple_bus_request_vec Q;
for (unsigned int i = 0; i < m_requests.size(); ++i)
{
simple_bus_request *request = m_requests[i];
if ((request->status == SIMPLE_BUS_REQUEST) ||
(request->status == SIMPLE_BUS_WAIT))
{
if (m_verbose)
sb_fprintf(stdout, "%s %s : request (%d) [%s]\n",
sc_time_stamp().to_string().c_str(), name(),
request->priority, simple_bus_status_str[request->status]);
Q.push_back(request);
}
}
if (Q.size() > 0)
return arbiter_port->arbitrate(Q);
return (simple_bus_request *)0;
}
void simple_bus::clear_locks()
{
for (unsigned int i = 0; i < m_requests.size(); ++i)
if (m_requests[i]->lock == SIMPLE_BUS_LOCK_GRANTED)
m_requests[i]->lock = SIMPLE_BUS_LOCK_SET;
else
m_requests[i]->lock = SIMPLE_BUS_LOCK_NO;
}
|