1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
/*****************************************************************************
Licensed to Accellera Systems Initiative Inc. (Accellera) under one or
more contributor license agreements. See the NOTICE file distributed
with this work for additional information regarding copyright ownership.
Accellera licenses this file to you under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with the
License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing
permissions and limitations under the License.
*****************************************************************************/
#ifndef __SIMPLE_AT_TARGET2_H__
#define __SIMPLE_AT_TARGET2_H__
#include "tlm.h"
#include "tlm_utils/simple_target_socket.h"
#include <vector>
#include <queue>
//#include <iostream>
class SimpleATTarget2 : public sc_core::sc_module
{
public:
typedef tlm::tlm_generic_payload transaction_type;
typedef tlm::tlm_phase phase_type;
typedef tlm::tlm_sync_enum sync_enum_type;
typedef tlm_utils::simple_target_socket<SimpleATTarget2> target_socket_type;
public:
target_socket_type socket;
public:
SimpleATTarget2(sc_core::sc_module_name name) :
sc_core::sc_module(name),
socket("socket"),
ACCEPT_DELAY(25, sc_core::SC_NS),
RESPONSE_DELAY(100, sc_core::SC_NS)
{
// register nb_transport method
socket.register_nb_transport_fw(this, &SimpleATTarget2::myNBTransport);
SC_METHOD(beginResponse);
sensitive << mBeginResponseEvent;
dont_initialize();
SC_METHOD(endResponse);
sensitive << mEndResponseEvent;
dont_initialize();
}
//
// Simple AT-TA target
// - Request is accepted after fixed delay (relative to end of prev request
// phase)
// - Response is started after fixed delay (relative to end of prev resp
// phase)
//
sync_enum_type myNBTransport(transaction_type& trans,
phase_type& phase,
sc_core::sc_time& t)
{
if (phase == tlm::BEGIN_REQ) {
// transactions may be kept in queue after the initiator has send END_REQ
trans.acquire();
sc_dt::uint64 address = trans.get_address();
sc_assert(address < 400);
unsigned int& data = *reinterpret_cast<unsigned int*>(trans.get_data_ptr());
if (trans.get_command() == tlm::TLM_WRITE_COMMAND) {
std::cout << name() << ": Received write request: A = 0x"
<< std::hex << (unsigned int)address << ", D = 0x" << data
<< std::dec << " @ " << sc_core::sc_time_stamp()
<< std::endl;
*reinterpret_cast<unsigned int*>(&mMem[address]) = data;
} else {
std::cout << name() << ": Received read request: A = 0x"
<< std::hex << (unsigned int)address
<< std::dec << " @ " << sc_core::sc_time_stamp()
<< std::endl;
data = *reinterpret_cast<unsigned int*>(&mMem[address]);
}
// End request phase after accept delay
t += ACCEPT_DELAY;
phase = tlm::END_REQ;
if (mResponseQueue.empty()) {
// Start processing transaction after accept delay
// Notify begin of response phase after accept delay + response delay
mBeginResponseEvent.notify(t + RESPONSE_DELAY);
}
mResponseQueue.push(&trans);
// AT-noTA target
// - always return false
// - immediately return delay to indicate end of phase
return tlm::TLM_UPDATED;
} else if (phase == tlm::END_RESP) {
// response phase ends after t
mEndResponseEvent.notify(t);
return tlm::TLM_COMPLETED;
}
// Not possible
sc_assert(0); exit(1);
// return tlm::TLM_COMPLETED; //unreachable code
}
void beginResponse()
{
sc_assert(!mResponseQueue.empty());
// start response phase of oldest transaction
phase_type phase = tlm::BEGIN_RESP;
sc_core::sc_time t = sc_core::SC_ZERO_TIME;
transaction_type* trans = mResponseQueue.front();
sc_assert(trans);
// Set response data
trans->set_response_status(tlm::TLM_OK_RESPONSE);
if (trans->get_command() == tlm::TLM_READ_COMMAND) {
sc_dt::uint64 address = trans->get_address();
sc_assert(address < 400);
*reinterpret_cast<unsigned int*>(trans->get_data_ptr()) =
*reinterpret_cast<unsigned int*>(&mMem[address]);
}
if (socket->nb_transport_bw(*trans, phase, t) == tlm::TLM_COMPLETED) {
// response phase ends after t
mEndResponseEvent.notify(t);
} else {
// initiator will call nb_transport to indicate end of response phase
}
}
void endResponse()
{
sc_assert(!mResponseQueue.empty());
mResponseQueue.front()->release();
mResponseQueue.pop();
// Start processing next transaction when previous response is accepted.
// Notify begin of response phase after RESPONSE delay
if (!mResponseQueue.empty()) {
mBeginResponseEvent.notify(RESPONSE_DELAY);
}
}
private:
const sc_core::sc_time ACCEPT_DELAY;
const sc_core::sc_time RESPONSE_DELAY;
private:
unsigned char mMem[400];
std::queue<transaction_type*> mResponseQueue;
sc_core::sc_event mBeginResponseEvent;
sc_core::sc_event mEndResponseEvent;
};
#endif
|