1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
/* -*- linux-c -*-
* Map Runtime Functions
* Copyright (C) 2012 Red Hat Inc.
*
* This file is part of systemtap, and is free software. You can
* redistribute it and/or modify it under the terms of the GNU General
* Public License (GPL); either version 2, or (at your option) any
* later version.
*/
#ifndef _STAPDYN_MAP_RUNTIME_H_
#define _STAPDYN_MAP_RUNTIME_H_
#include <pthread.h>
#ifdef NEED_MAP_LOCKS
#define MAP_LOCK(m) pthread_mutex_lock(&(m)->lock)
#define MAP_UNLOCK(m) pthread_mutex_unlock(&(m)->lock)
#else
#define MAP_LOCK(sd) do {} while (0)
#define MAP_UNLOCK(sd) do {} while (0)
#endif
/* Note that pthread_mutex_trylock()'s return value is opposite of the
* kernel's spin_trylock(), so we invert the return value of
* pthread_mutex_trylock(). */
#define MAP_TRYLOCK(m) (!pthread_mutex_trylock(&(m)->lock))
#define MAP_GET_CPU() STAT_GET_CPU()
#define MAP_PUT_CPU() STAT_PUT_CPU()
static int _stp_map_initialize_lock(MAP m)
{
#ifdef NEED_MAP_LOCKS
int rc;
if ((rc = stp_pthread_mutex_init_shared(&m->lock)) != 0) {
_stp_error("Couldn't initialize map mutex: %d\n", rc);
return rc;
}
#endif
return 0;
}
static void _stp_map_destroy_lock(MAP m)
{
#ifdef NEED_MAP_LOCKS
(void)pthread_mutex_destroy(&m->lock);
#endif
}
struct pmap {
offptr_t oagg; /* aggregation map */
offptr_t omap[]; /* per-cpu maps */
};
static inline MAP _stp_pmap_get_agg(PMAP p)
{
return offptr_get(&p->oagg);
}
static inline void _stp_pmap_set_agg(PMAP p, MAP agg)
{
offptr_set(&p->oagg, agg);
}
static inline MAP _stp_pmap_get_map(PMAP p, unsigned cpu)
{
if (cpu >= _stp_runtime_num_contexts)
cpu = 0;
return offptr_get(&p->omap[cpu]);
}
static inline void _stp_pmap_set_map(PMAP p, MAP m, unsigned cpu)
{
if (cpu >= _stp_runtime_num_contexts)
cpu = 0;
offptr_set(&p->omap[cpu], m);
}
static void __stp_map_del(MAP map)
{
if (map == NULL)
return;
/* The lock is the only thing to clean up. */
_stp_map_destroy_lock(map);
}
/** Deletes a map.
* Deletes a map, freeing all memory in all elements.
* Normally done only when the module exits.
* @param map
*/
static void _stp_map_del(MAP map)
{
if (map == NULL)
return;
__stp_map_del(map);
_stp_shm_free(map);
}
static void _stp_pmap_del(PMAP pmap)
{
int i;
if (pmap == NULL)
return;
/* The pmap is one giant allocation, so do only
* the basic cleanup for each map. */
for_each_possible_cpu(i)
__stp_map_del(_stp_pmap_get_map (pmap, i));
__stp_map_del(_stp_pmap_get_agg(pmap));
_stp_shm_free(pmap);
}
static int
_stp_map_init(MAP m, unsigned max_entries, int wrap, int node_size)
{
unsigned i;
/* The node memory is allocated right after the map itself. */
void *node_mem = m + 1;
INIT_MLIST_HEAD(&m->pool);
INIT_MLIST_HEAD(&m->head);
for (i = 0; i < HASH_TABLE_SIZE; i++)
INIT_MHLIST_HEAD(&m->hashes[i]);
m->maxnum = max_entries;
m->wrap = wrap;
for (i = 0; i < max_entries; i++) {
struct map_node *node = node_mem + i * node_size;
mlist_add(&node->lnode, &m->pool);
INIT_MHLIST_NODE(&node->hnode);
}
if (_stp_map_initialize_lock(m) != 0)
return -1;
return 0;
}
/** Create a new map.
* Maps must be created at module initialization time.
* @param max_entries The maximum number of entries allowed. Currently that
* number will be preallocated.If more entries are required, the oldest ones
* will be deleted. This makes it effectively a circular buffer.
* @return A MAP on success or NULL on failure.
* @ingroup map_create
*/
static MAP
_stp_map_new(unsigned max_entries, int wrap, int node_size,
int cpu __attribute((unused)))
{
MAP m;
/* NB: Allocate the map in one big chuck.
* (See _stp_pmap_new for more explanation) */
size_t map_size = sizeof(struct map_root) + node_size * max_entries;
m = _stp_shm_zalloc(map_size);
if (m == NULL)
return NULL;
if (_stp_map_init(m, max_entries, wrap, node_size)) {
_stp_map_del(m);
return NULL;
}
return m;
}
static PMAP
_stp_pmap_new(unsigned max_entries, int wrap, int node_size)
{
int i;
MAP m;
PMAP pmap;
void *map_mem;
/* Allocate the pmap in one big chuck.
*
* The reason for this is that we're allocating in the shared memory
* mmap, which may have to move locations in order to grow. If some
* smaller unit of the pmap allocation were to cause the whole thing to
* move, then we'd lose track of the prior allocations.
*
* Once returned from here, we'll always access the pmap via the global
* shared memory base. So if other map/pmap/stat/etc. allocations
* cause it to move later, that's ok.
*/
size_t map_size = sizeof(struct map_root) + node_size * max_entries;
size_t pmap_size = sizeof(struct pmap) +
sizeof(offptr_t) * _stp_runtime_num_contexts;
size_t total_size = pmap_size +
map_size * (_stp_runtime_num_contexts + 1);
map_mem = pmap = _stp_shm_zalloc(total_size);
if (pmap == NULL)
return NULL;
map_mem += pmap_size;
for_each_possible_cpu(i)
_stp_pmap_set_map(pmap, NULL, i);
_stp_pmap_set_agg(pmap, NULL);
/* Initialize the per-cpu maps. */
for_each_possible_cpu(i) {
m = map_mem;
if (_stp_map_init(m, max_entries, wrap, node_size) != 0)
goto err;
_stp_pmap_set_map(pmap, m, i);
map_mem += map_size;
}
/* Initialize the aggregate map. */
m = map_mem;
if (_stp_map_init(m, max_entries, wrap, node_size) != 0)
goto err;
_stp_pmap_set_agg(pmap, m);
return pmap;
err:
_stp_pmap_del(pmap);
return NULL;
}
#endif /* _STAPDYN_MAP_RUNTIME_H_ */
|