File: analysis.cxx

package info (click to toggle)
systemtap 5.1-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 47,964 kB
  • sloc: cpp: 80,838; ansic: 54,757; xml: 49,725; exp: 43,665; sh: 11,527; python: 5,003; perl: 2,252; tcl: 1,312; makefile: 1,006; javascript: 149; lisp: 105; awk: 101; asm: 91; java: 70; sed: 16
file content (325 lines) | stat: -rw-r--r-- 7,412 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
// systemtap analysis code
// Copyright (C) 2021 Red Hat Inc.
//
// This file is part of systemtap, and is free software.  You can
// redistribute it and/or modify it under the terms of the GNU General
// Public License (GPL); either version 2, or (at your option) any
// later version.

#include "config.h"
#include "session.h"

#ifdef HAVE_DYNINST

#include "loc2stap.h"
#include "analysis.h"
#include <dyninst/Symtab.h>
#include <dyninst/Function.h>
#include <dyninst/liveness.h>
#include <dyninst/dyn_regs.h>

using namespace Dyninst;
using namespace SymtabAPI;
using namespace ParseAPI;
using namespace std;


// Data structures to cache dyninst parsing of binaries
class bin_info {
public:
  bin_info(SymtabCodeSource *s=NULL, CodeObject *c=NULL, SymtabAPI::Symtab *sym=NULL): symtab(sym), sts(s), co(c) {};
	~bin_info(){};
	SymtabAPI::Symtab *symtab;
	SymtabCodeSource *sts;
	CodeObject *co;
};
typedef map<string, bin_info> parsed_bin;
static parsed_bin cached_info;

// Clean things up when analysis no longer needs the cached dyninst objects
void flush_analysis_caches()
{
  for(auto i: cached_info) {
    delete i.second.co;
    delete i.second.sts;
    SymtabAPI::Symtab::closeSymtab(i.second.symtab);
  }
  cached_info.clear();
}


class analysis {
public:
	analysis(string name);
	SymtabCodeSource *sts;
	CodeObject *co;
};

//  Get the binary set up for anaysis
analysis::analysis(string name)
{
	char *name_str = strdup(name.c_str());
	sts = NULL;
	co = NULL;
	SymtabAPI::Symtab *symTab;
	bool isParsable;

	// Use cached information if available
	if (cached_info.find(name) != cached_info.end()) {
		sts = cached_info[name].sts;
		co = cached_info[name].co;
		goto cleanup;
	}

	// Not not seen before
	// Create a new binary code object from the filename argument
	isParsable = SymtabAPI::Symtab::openFile(symTab, name_str);
	if(!isParsable) goto cleanup;

	sts = new SymtabCodeSource(symTab);
	if(!sts) goto cleanup;

	co = new CodeObject(sts);
	if(!co) goto cleanup;

	// Cache the info for future reference
	{
		bin_info entry(sts,co,symTab);
		cached_info.insert(make_pair(name,entry));
	}

cleanup:
	free(name_str);
}

#if defined(__i386__) || defined(__x86_64__)
static const MachRegister dyninst_register_64[] = {
	x86_64::rax,
	x86_64::rdx,
	x86_64::rcx,
	x86_64::rbx,
	x86_64::rsi,
	x86_64::rdi,
	x86_64::rbp,
	x86_64::rsp,
	x86_64::r8,
	x86_64::r9,
	x86_64::r10,
	x86_64::r11,
	x86_64::r12,
	x86_64::r13,
	x86_64::r14,
	x86_64::r15,
	x86_64::rip
};

static const MachRegister dyninst_register_32[] = {
	x86::eax,
	x86::edx,
	x86::ecx,
	x86::ebx,
	x86::esi,
	x86::edi,
	x86::ebp,
	x86::esp
};

#elif defined(__aarch64__)
static const MachRegister dyninst_register_64[] = {
	aarch64::x0,
	aarch64::x1,
	aarch64::x2,
	aarch64::x3,
	aarch64::x4,
	aarch64::x5,
	aarch64::x6,
	aarch64::x7,
	aarch64::x8,
	aarch64::x9,
	aarch64::x10,
	aarch64::x11,
	aarch64::x12,
	aarch64::x13,
	aarch64::x14,
	aarch64::x15,
	aarch64::x16,
	aarch64::x17,
	aarch64::x18,
	aarch64::x19,
	aarch64::x20,
	aarch64::x21,
	aarch64::x22,
	aarch64::x23,
	aarch64::x24,
	aarch64::x25,
	aarch64::x26,
	aarch64::x27,
	aarch64::x28,
	aarch64::x29,
	aarch64::x30,
	aarch64::sp
};

static const MachRegister dyninst_register_32[1]; // No 32-bit support

#elif defined(__powerpc__)
/* For ppc64 still use the ppc32 register names */
static const MachRegister dyninst_register_64[] = {
    ppc32::r0,
    ppc32::r1,
    ppc32::r2,
    ppc32::r3,
    ppc32::r4,
    ppc32::r5,
    ppc32::r6,
    ppc32::r7,
    ppc32::r8,
    ppc32::r9,
    ppc32::r10,
    ppc32::r11,
    ppc32::r12,
    ppc32::r13,
    ppc32::r14,
    ppc32::r15,
    ppc32::r16,
    ppc32::r17,
    ppc32::r18,
    ppc32::r19,
    ppc32::r20,
    ppc32::r21,
    ppc32::r22,
    ppc32::r23,
    ppc32::r24,
    ppc32::r25,
    ppc32::r26,
    ppc32::r27,
    ppc32::r28,
    ppc32::r29,
    ppc32::r30,
    ppc32::r31
};

static const MachRegister dyninst_register_32[] = {
    ppc32::r0,
    ppc32::r1,
    ppc32::r2,
    ppc32::r3,
    ppc32::r4,
    ppc32::r5,
    ppc32::r6,
    ppc32::r7,
    ppc32::r8,
    ppc32::r9,
    ppc32::r10,
    ppc32::r11,
    ppc32::r12,
    ppc32::r13,
    ppc32::r14,
    ppc32::r15,
    ppc32::r16,
    ppc32::r17,
    ppc32::r18,
    ppc32::r19,
    ppc32::r20,
    ppc32::r21,
    ppc32::r22,
    ppc32::r23,
    ppc32::r24,
    ppc32::r25,
    ppc32::r26,
    ppc32::r27,
    ppc32::r28,
    ppc32::r29,
    ppc32::r30,
    ppc32::r31
};
#endif

// Data structures to cache dyninst liveness analysis of a function
typedef map<string, LivenessAnalyzer*> precomputed_liveness;
static precomputed_liveness cached_liveness;

int liveness(systemtap_session& s,
	     target_symbol *e,
	     string executable,
	     Dwarf_Addr addr,
	     location_context ctx)
{
  try{
	// Doing this inside a try/catch because dyninst may require
	// too much memory to parse the binary.
	// should cache the executable names like the other things
	analysis func_to_analyze(executable);
	MachRegister r;

	// Punt if unsuccessful in parsing binary
	if (!func_to_analyze.co){
		s.print_warning(_F("liveness analysis unable to parse binary %s",
				   executable.c_str()), e->tok);
		return 0;
	}

	// Determine whether 32-bit or 64-bit code as the register names are different in dyninst
	int reg_width = func_to_analyze.co->cs()->getAddressWidth();

	// Find where the variable is located
	location *loc = ctx.locations.back ();

	// If variable isn't in a register, punt (return 0)
	if (loc->type != loc_register) return 0;

	// Map dwarf number to dyninst register name, punt if out of range
	unsigned int regno = loc->regno;
	switch (reg_width){
	case 4:
		if (regno >= (sizeof(dyninst_register_32)/sizeof(MachRegister))) return 0;
		r = dyninst_register_32[regno]; break;
	case 8:
		if (regno >= (sizeof(dyninst_register_64)/sizeof(MachRegister))) return 0;
		r = dyninst_register_64[regno]; break;
	default:
		// All the current architectures that systemtap (and dyninst) support
		// are 32-bit (4 byte) or 64-bit (8 byte). Should never end up here.
		assert(false);
		return 0;
	}

	// Find the function containing the probe point.
	std::set<ParseAPI::Function*> ff_s;
	if(func_to_analyze.co->findFuncs(NULL, addr, ff_s) <= 0) return 0;
	ParseAPI::Function *func = *ff_s.begin();

	LivenessAnalyzer *la;
	// LivenessAnalyzer does allow some caching on a per executable basis
	// Check if a previous liveness analyzer exists for the executable
	if (cached_liveness.find(executable) != cached_liveness.end()) {
		la = cached_liveness[executable];
	}else {
		// Otherwise create new liveness analysis
		la = new LivenessAnalyzer(reg_width);
		cached_liveness.insert(make_pair(executable,la));
	}
	la->analyze(func);

	// Get the basic block and instruction containing the the probe point.
	set<Block *> bb_s;
	if (func_to_analyze.co->findBlocks(NULL, addr, bb_s) != 1 )
		return 0; // too many (or too few) basic blocks, punt
	Block *bb = *bb_s.begin();

	// Construct a liveness query location for the probe point.
	InsnLoc i(bb,  addr, bb->getInsn(addr));
	Location iloc(func, i);

	// Query to see if whether the register is live at that point
	bool used;
	la->query(iloc, LivenessAnalyzer::Before, r, used);
	return (used ? 1 : -1);
  } catch (std::bad_alloc & ex){
    s.print_warning(_F("unable to allocate memory for liveness analysis of %s",
				   executable.c_str()), e->tok);
    return 0;
  }
}

#endif // HAVE_DYNINST