1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
|
/* target operations in the Linux kernel mode
* Copyright (C) 2005-2019 Red Hat Inc.
* Copyright (C) 2005-2007 Intel Corporation.
* Copyright (C) 2007 Quentin Barnes.
*
* This file is part of systemtap, and is free software. You can
* redistribute it and/or modify it under the terms of the GNU General
* Public License (GPL); either version 2, or (at your option) any
* later version.
*/
#ifndef _LINUX_LOC2C_RUNTIME_H_
#define _LINUX_LOC2C_RUNTIME_H_
#ifdef STAPCONF_LINUX_UACCESS_H
#include <linux/uaccess.h>
#else
#include <asm/uaccess.h>
#endif
#include <linux/types.h>
#ifdef STAPCONF_ASM_TLBFLUSH_H
#include <asm/tlbflush.h>
#endif
#include <linux/nsproxy.h>
#define intptr_t long
#define uintptr_t unsigned long
#include "../loc2c-runtime.h"
#ifndef STAPCONF_PAGEFAULT_DISABLE /* before linux commit a866374a */
#define pagefault_disable() preempt_disable()
#define pagefault_enable() preempt_enable_no_resched()
#endif
#define check_fetch_register(regs,regno,maxregno,fn) ({ \
if ((regs) == 0 || (regno) < 0 || (regno) > (maxregno)) { \
snprintf(c->error_buffer, sizeof(c->error_buffer), \
STAP_MSG_LOC2C_04); \
c->last_error = c->error_buffer; \
goto deref_fault; \
} \
fn(regs, regno); \
})
#define check_store_register(regs,regno,maxregno,value,fn) do { \
if ((regs) == 0 || (regno) < 0 || (regno) > (maxregno)) { \
snprintf(c->error_buffer, sizeof(c->error_buffer), \
STAP_MSG_LOC2C_04); \
c->last_error = c->error_buffer; \
goto deref_fault; \
} \
fn(regs, regno, value); \
} while(0)
#define k_fetch_register(regno) check_fetch_register(c->kregs,regno,pt_regs_maxno,pt_regs_fetch_register)
#define k_store_register(regno,value) check_store_register(c->kregs,regno,pt_regs_maxno,value,pt_regs_store_register)
/* PR 10601: user-space (user_regset) register access.
Needs arch specific code, only i386 and x86_64 for now. */
#if ((defined(STAPCONF_REGSET)) \
&& (defined (__i386__) || defined (__x86_64__)))
#if defined(STAPCONF_REGSET)
#include <linux/regset.h>
#endif
// PR13489, inodes-uprobes export kludge
#if !defined(STAPCONF_TASK_USER_REGSET_VIEW_EXPORTED)
// First typedef from the original decl, then #define it as a typecasted call.
// NB: not all archs actually have the function, but the decl is universal in regset.h
typedef typeof(&task_user_regset_view) task_user_regset_view_fn;
/* Special macro to tolerate the kallsyms function pointer being zero. */
#define task_user_regset_view(t) (kallsyms_task_user_regset_view ? \
ibt_wrapper(const struct user_regset_view *,
(* (task_user_regset_view_fn)(kallsyms_task_user_regset_view))((t))) : \
NULL)
#endif
struct usr_regset_lut {
char *name;
unsigned rsn;
unsigned pos;
};
/* DWARF register number -to- user_regset bank/offset mapping table.
The register numbers come from the processor-specific ELF documents.
The user-regset bank/offset values come from kernel $ARCH/include/asm/user*.h
or $ARCH/kernel/ptrace.c. */
#if defined (__i386__) || defined (__x86_64__)
static const struct usr_regset_lut url_i386[] = {
{ "ax", NT_PRSTATUS, 6*4 },
{ "cx", NT_PRSTATUS, 1*4 },
{ "dx", NT_PRSTATUS, 2*4 },
{ "bx", NT_PRSTATUS, 0*4 },
{ "sp", NT_PRSTATUS, 15*4 },
{ "bp", NT_PRSTATUS, 5*4 },
{ "si", NT_PRSTATUS, 3*4 },
{ "di", NT_PRSTATUS, 4*4 },
{ "ip", NT_PRSTATUS, 12*4 },
};
#endif
#if defined (__x86_64__)
static const struct usr_regset_lut url_x86_64[] = {
{ "rax", NT_PRSTATUS, 10*8 },
{ "rdx", NT_PRSTATUS, 12*8 },
{ "rcx", NT_PRSTATUS, 11*8 },
{ "rbx", NT_PRSTATUS, 5*8 },
{ "rsi", NT_PRSTATUS, 13*8 },
{ "rdi", NT_PRSTATUS, 14*8 },
{ "rbp", NT_PRSTATUS, 4*8 },
{ "rsp", NT_PRSTATUS, 19*8 },
{ "r8", NT_PRSTATUS, 9*8 },
{ "r9", NT_PRSTATUS, 8*8 },
{ "r10", NT_PRSTATUS, 7*8 },
{ "r11", NT_PRSTATUS, 6*8 },
{ "r12", NT_PRSTATUS, 3*8 },
{ "r13", NT_PRSTATUS, 2*8 },
{ "r14", NT_PRSTATUS, 1*8 },
{ "r15", NT_PRSTATUS, 0*8 },
{ "rip", NT_PRSTATUS, 16*8 },
/* XXX: SSE registers %xmm0-%xmm7 */
{ "xmm0", NT_PRFPREG, 160+0*16}, // dwarf reg# 17 = byte #160 in PRFPREG register dump
{ "xmm1", NT_PRFPREG, 160+1*16}, // see also gdb gdb i387-tdep.c fxsave_offset
{ "xmm2", NT_PRFPREG, 160+2*16}, // see also intel x86-64 architecture software manual, fxsave area
{ "xmm3", NT_PRFPREG, 160+3*16},
{ "xmm4", NT_PRFPREG, 160+4*16},
{ "xmm5", NT_PRFPREG, 160+5*16},
{ "xmm6", NT_PRFPREG, 160+6*16},
{ "xmm7", NT_PRFPREG, 160+7*16},
/* XXX: SSE2 registers %xmm8-%xmm15 */
{ "xmm8", NT_PRFPREG, 160+8*16},
{ "xmm9", NT_PRFPREG, 160+9*16},
{ "xmm10", NT_PRFPREG, 160+10*16},
{ "xmm11", NT_PRFPREG, 160+11*16},
{ "xmm12", NT_PRFPREG, 160+12*16},
{ "xmm13", NT_PRFPREG, 160+13*16},
{ "xmm14", NT_PRFPREG, 160+14*16},
{ "xmm15", NT_PRFPREG, 160+15*16},
/* XXX: FP registers %st0-%st7 */
/* XXX: MMX registers %mm0-%mm7 */
{ "st0", NT_PRFPREG, 32},
{ "st1", NT_PRFPREG, 48},
{ "st2", NT_PRFPREG, 64},
{ "st3", NT_PRFPREG, 80},
{ "st4", NT_PRFPREG, 90},
{ "st5", NT_PRFPREG, 112},
{ "st6", NT_PRFPREG, 128},
{ "st7", NT_PRFPREG, 144}
};
#endif
/* XXX: insert other architectures here. */
static u32 ursl_fetch32 (const struct usr_regset_lut* lut, unsigned lutsize, int e_machine, unsigned regno)
{
u32 value = ~0;
const struct user_regset_view *rsv = task_user_regset_view(current);
unsigned rsi;
int rc;
unsigned rsn;
unsigned pos;
unsigned count;
WARN_ON (!rsv);
if (!rsv) goto out;
WARN_ON (regno >= lutsize);
if (regno >= lutsize) goto out;
if (rsv->e_machine != e_machine) goto out;
rsn = lut[regno].rsn;
pos = lut[regno].pos;
count = sizeof(value);
for (rsi=0; rsi<rsv->n; rsi++)
if (rsv->regsets[rsi].core_note_type == rsn)
{
const struct user_regset *rs = & rsv->regsets[rsi];
rc = (rs->get)(current, rs, pos, count, & value, NULL);
WARN_ON (rc);
/* success */
goto out;
}
WARN_ON (1); /* did not find appropriate regset! */
out:
return value;
}
static void ursl_store32 (const struct usr_regset_lut* lut,unsigned lutsize, int e_machine, unsigned regno, u32 value)
{
const struct user_regset_view *rsv = task_user_regset_view(current);
unsigned rsi;
int rc;
unsigned rsn;
unsigned pos;
unsigned count;
WARN_ON (!rsv);
if (!rsv) goto out;
WARN_ON (regno >= lutsize);
if (regno >= lutsize) goto out;
if (rsv->e_machine != e_machine) goto out;
rsn = lut[regno].rsn;
pos = lut[regno].pos;
count = sizeof(value);
for (rsi=0; rsi<rsv->n; rsi++)
if (rsv->regsets[rsi].core_note_type == rsn)
{
const struct user_regset *rs = & rsv->regsets[rsi];
rc = (rs->set)(current, rs, pos, count, & value, NULL);
WARN_ON (rc);
/* success */
goto out;
}
WARN_ON (1); /* did not find appropriate regset! */
out:
return;
}
static u64 ursl_fetch64 (const struct usr_regset_lut* lut, unsigned lutsize, int e_machine, unsigned regno)
{
u64 value = ~0;
const struct user_regset_view *rsv = task_user_regset_view(current);
unsigned rsi;
int rc;
unsigned rsn;
unsigned pos;
unsigned count;
if (!rsv) goto out;
if (regno >= lutsize) goto out;
if (rsv->e_machine != e_machine) goto out;
rsn = lut[regno].rsn;
pos = lut[regno].pos;
count = sizeof(value);
for (rsi=0; rsi<rsv->n; rsi++)
if (rsv->regsets[rsi].core_note_type == rsn)
{
const struct user_regset *rs = & rsv->regsets[rsi];
rc = (rs->get)(current, rs, pos, count, & value, NULL);
if (rc)
goto out;
/* success */
return value;
}
out:
printk (KERN_WARNING "process %d mach %d regno %d not available for fetch.\n", current->tgid, e_machine, regno);
return value;
}
static void ursl_store64 (const struct usr_regset_lut* lut,unsigned lutsize, int e_machine, unsigned regno, u64 value)
{
const struct user_regset_view *rsv = task_user_regset_view(current);
unsigned rsi;
int rc;
unsigned rsn;
unsigned pos;
unsigned count;
WARN_ON (!rsv);
if (!rsv) goto out;
WARN_ON (regno >= lutsize);
if (regno >= lutsize) goto out;
if (rsv->e_machine != e_machine) goto out;
rsn = lut[regno].rsn;
pos = lut[regno].pos;
count = sizeof(value);
for (rsi=0; rsi<rsv->n; rsi++)
if (rsv->regsets[rsi].core_note_type == rsn)
{
const struct user_regset *rs = & rsv->regsets[rsi];
rc = (rs->set)(current, rs, pos, count, & value, NULL);
if (rc)
goto out;
/* success */
return;
}
out:
printk (KERN_WARNING "process %d mach %d regno %d not available for store.\n", current->tgid, e_machine, regno);
return;
}
#if defined (__i386__)
#define uu_fetch_register(_regs,regno) ursl_fetch32(url_i386, ARRAY_SIZE(url_i386), EM_386, regno)
#define uu_store_register(_regs,regno,value) ursl_store32(url_i386, ARRAY_SIZE(url_i386), EM_386, regno, value)
#define u_fetch_register(regno) check_fetch_register(c->uregs,regno,ARRAY_SIZE(url_i386),uu_fetch_register)
#define u_store_register(regno,value) check_store_register(c->uregs,regno,ARRAY_SIZE(url_i386),value,uu_store_register)
#elif defined (__x86_64__)
#define uu_fetch_register(_regs,regno) (_stp_is_compat_task() ? ursl_fetch32(url_i386, ARRAY_SIZE(url_i386), EM_386, regno) : ursl_fetch64(url_x86_64, ARRAY_SIZE(url_x86_64), EM_X86_64, regno))
#define uu_store_register(_regs,regno,value) (_stp_is_compat_task() ? ursl_store32(url_i386, ARRAY_SIZE(url_i386), EM_386, regno, value) : ursl_store64(url_x86_64, ARRAY_SIZE(url_x86_64), EM_X86_64, regno, value))
#define u_fetch_register(regno) check_fetch_register(c->uregs,regno,_stp_is_compat_task()?ARRAY_SIZE(url_i386):ARRAY_SIZE(url_x86_64),uu_fetch_register)
#define u_store_register(regno,value) check_store_register(c->uregs,regno,_stp_is_compat_task()?ARRAY_SIZE(url_i386):ARRAY_SIZE(url_x86_64),value,uu_store_register)
#endif
#else /* ! STAPCONF_REGSET */
/* Downgrade to pt_dwarf_register access. */
#define u_store_register(regno, value) \
check_store_register(c->uregs,regno,pt_regs_maxno,value,pt_regs_store_register)
/* If we're in a 32/31-bit task in a 64-bit kernel, we need to emulate
* 32-bitness by masking the output of pt_regs_fetch_register() */
#ifndef CONFIG_COMPAT
#define u_fetch_register(regno) \
check_fetch_register(c->uregs,regno,pt_regs_maxno,pt_regs_fetch_register)
#else
#define u_fetch_register(regno) \
check_fetch_register(c->uregs,regno,pt_regs_maxno,pt_regs_fetch_register) & (_stp_is_compat_task() ? 0xffffffff : ~(int64_t)0)
#endif
#endif /* STAPCONF_REGSET */
/* The deref and store_deref macros are called to safely access
addresses in the probe context. These macros are used only for
kernel addresses. The macros must handle bogus addresses here
gracefully (as from corrupted data structures, stale pointers,
etc), by doing a "goto deref_fault".
Prior to kernel 5.10, on most machines, the asm/uaccess.h macros
__get_user and __put_user macros do exactly the low-level work
we need to access memory with fault handling,
and are not actually specific to user-address access at all.
After kernel 5.10 on arches removing set_fs(), kernel
addresses should be read/written with get_kernel_nofault and
copy_to_kernel_nofault while user addresses are still read/written
with __get_user and __put_user. So we have wrapper macros
__stp_{get,put}_either which do the right thing on all kernel
versions. */
/*
* On most platforms, __get_user_inatomic() and __put_user_inatomic()
* are defined, which are the same as __get_user() and __put_user(),
* but without a call to might_sleep(). Since we're disabling page
* faults when we read, we want to use the 'inatomic' variants when
* available.
*/
#ifdef __get_user_inatomic
#define __stp_get_user __get_user_inatomic
#else
#define __stp_get_user __get_user
#endif
#ifdef __put_user_inatomic
#define __stp_put_user __put_user_inatomic
#else
#define __stp_put_user __put_user
#endif
/*
* Some arches (like aarch64) don't have __get_user_bad() or
* __put_user_bad(), so use BUILD_BUG() instead.
*/
#ifdef BUILD_BUG
#define __stp_get_user_bad BUILD_BUG
#define __stp_put_user_bad BUILD_BUG
#else
#define __stp_get_user_bad __get_user_bad
#define __stp_put_user_bad __put_user_bad
#endif
typedef void (*switch_task_namespaces_fn)(struct task_struct *tsk, struct nsproxy *new);
typedef void (*create_new_namespaces_fn)(struct task_struct *p, struct nsproxy *new);
typedef int (*unshare_nsproxy_namespaces_fn)(unsigned long, struct nsproxy **,
struct cred *, struct fs_struct *);
typedef void (*free_nsproxy_fn)(struct nsproxy *ns);
typedef bool (*proc_ns_file_fn)(const struct file *file);
/*
* __stp_{get,put}_either take an stp_mm_segment_t parameter
* and use that to decide the correct address space
* on post-5.10 non-set_fs() kernels.
*/
#ifdef STAPCONF_SET_FS
#define __stp_get_either(v, addr, seg) __stp_get_user((v), (addr))
#define __stp_put_either(v, addr, seg) __stp_put_user((v), (addr))
#else
/* PR26811: Distinguish user- and kernel-space get and put operations.
*
* XXX There is slight redundancy between the size adjustments we
* do and the size adjustments done by {get,copy_to}_kernel_nofault. */
/* XXX copy_to_kernel_nofault is what we need, but it's not exported.
* First typedef from the original decl, then #define it as a typecasted call.
*/
typedef typeof(©_to_kernel_nofault) copy_to_kernel_nofault_fn;
#define copy_to_kernel_nofault(dst, src, size) \
(kallsyms_copy_to_kernel_nofault ? \
ibt_wrapper(long, \
((* (copy_to_kernel_nofault_fn)(kallsyms_copy_to_kernel_nofault)) \
((dst),(src),(size)))) : \
-EFAULT)
#define __stp_get_either(v, addr, seg) \
(MM_SEG_IS_KERNEL((seg)) ? \
get_kernel_nofault((v), (addr)) : \
__stp_get_user((v), (addr)))
#define __stp_put_either(v, addr, seg) \
(MM_SEG_IS_KERNEL((seg)) ? \
({typeof(v) _v = (v); long rc = copy_to_kernel_nofault((void *)(addr), (void *)&_v, sizeof(v)); rc;}) : \
__stp_put_user((v), (addr)))
#endif
/*
* __stp_deref_nocheck(): reads a simple type from a
* location with no address sanity checking.
*
* value: read the simple type into this variable
* size: number of bytes to read
* addr: address to read from
* seg: memory segment to use, either kernel (STP_KERNEL_DS) or user
* (STP_USER_DS)
*
* Note that the caller *must* check the address for validity and do
* any other checks necessary. This macro is designed to be used as
* the base for the other macros more suitable for the rest of the
* code to use. Note that the caller is also responsible for ensuring
* that the kernel doesn't pagefault while reading.
*/
static __always_inline int __stp_deref_nocheck_(u64 *pv, size_t size,
void *addr, stp_mm_segment_t seg)
{
u64 v = 0;
int r = -EFAULT;
switch (size)
{
case 1: { u8 b; r = __stp_get_either(b, (u8 *)addr, seg); v = b; } break;
case 2: { u16 w; r = __stp_get_either(w, (u16 *)addr, seg); v = w; } break;
case 4: { u32 l; r = __stp_get_either(l, (u32 *)addr, seg); v = l; } break;
#if defined(__i386__) || defined(__arm__)
/* x86 and arm can't do 8-byte get_user, so we have to split it */
case 8: { union { u32 l[2]; u64 ll; } val;
r = __stp_get_either(val.l[0], &((u32 *)addr)[0], seg);
if (! r)
r = __stp_get_either(val.l[1], &((u32 *)addr)[1], seg);
if (! r)
v = val.ll;
} break;
#else
case 8: { r = __stp_get_either(v, (u64 *)addr, seg); } break;
#endif
}
*pv = v;
return r;
}
#define __stp_deref_nocheck(value, size, addr, seg) \
({ \
u64 _v = 0; int _e = -EFAULT; \
switch (size) \
{ \
case 1: case 2: case 4: case 8: \
_e = __stp_deref_nocheck_ \
(&_v, (size), (void *)(uintptr_t)(addr), (seg)); \
(value) = _v; \
break; \
default: \
__stp_get_user_bad(); \
} \
_e; \
})
static __always_inline bool
stp_is_user_ds(stp_mm_segment_t seg)
{
#ifdef STP_NUMERICAL_DS
return seg == STP_USER_DS;
#else
stp_mm_segment_t user_seg = STP_USER_DS;
return memcmp(&seg, &user_seg, sizeof(stp_mm_segment_t)) == 0;
#endif
}
static __always_inline bool
stp_user_access_begin(int type, const void *ptr, size_t size,
stp_mm_segment_t *oldfs, stp_mm_segment_t seg)
{
#ifdef STAPCONF_SET_FS
*oldfs = get_fs();
set_fs(seg);
return 1;
#elif defined(STAPCONF_USER_ACCESS_BEGIN_3_ARGS)
return user_access_begin(type, ptr, size);
#elif defined(STAPCONF_USER_ACCESS_BEGIN_2_ARGS)
return user_access_begin(ptr, size);
#else
/* for very old kernels */
return 1;
#endif
}
static __always_inline void
stp_user_access_end(stp_mm_segment_t oldfs)
{
#ifdef STAPCONF_SET_FS
set_fs(oldfs);
#elif defined(STAPCONF_USER_ACCESS_END)
user_access_end();
#else
/* do nothing for very old kernels */
#endif
}
static __always_inline bool
stp_mem_access_begin(int type, const void *ptr, size_t size,
stp_mm_segment_t *oldfs, stp_mm_segment_t seg, bool *is_user_ptr)
{
bool is_user = stp_is_user_ds(seg);
*is_user_ptr = is_user;
if (is_user)
return stp_user_access_begin(type, ptr, size, oldfs, seg);
/* for kernel memory accesses */
#ifdef STAPCONF_SET_FS
*oldfs = get_fs();
#endif
return 1;
}
static __always_inline void
stp_mem_access_end(stp_mm_segment_t oldfs, bool is_user)
{
if (is_user)
return stp_user_access_end(oldfs);
/* not for userland */
#ifdef STAPCONF_SET_FS
set_fs(oldfs);
#endif
}
/*
* _stp_lookup_bad_addr(): safely verify an address
*
* type: memory access type (either VERIFY_READ or VERIFY_WRITE)
* size: number of bytes to verify
* addr: address to verify
* seg: memory segment to use, either kernel (STP_KERNEL_DS) or user
* (STP_USER_DS)
*
* The macro returns 0 if the address is valid, non-zero otherwise.
* Note that the kernel will not pagefault when trying to verify the
* memory. Also note that no DEREF_FAULT will occur when verifying the
* memory.
*/
static __always_inline int _stp_lookup_bad_addr_(int type, size_t size,
uintptr_t addr, stp_mm_segment_t seg)
{
int bad;
#ifdef STAPCONF_SET_FS
mm_segment_t oldfs = get_fs();
set_fs(seg);
#endif
pagefault_disable();
bad = lookup_bad_addr(type, addr, size, seg);
pagefault_enable();
#ifdef STAPCONF_SET_FS
set_fs(oldfs);
#endif
return bad;
}
#define _stp_lookup_bad_addr(type, size, addr, seg) \
_stp_lookup_bad_addr_((type), (size), (uintptr_t)(addr), (seg))
/*
* _stp_deref_nofault(): safely read a simple type from memory without
* a DEREF_FAULT on error
*
* value: read the simple type into this variable
* size: number of bytes to read
* addr: address to read from
* seg: memory segment to use, either kernel (STP_KERNEL_DS) or user
* (STP_USER_DS)
*
* If this macro gets an error while trying to read memory, nonzero is
* returned. On success, 0 is return. Note that the kernel will not
* pagefault when trying to read the memory.
*/
static __always_inline int _stp_deref_nofault_(u64 *pv, size_t size, void *addr,
stp_mm_segment_t seg)
{
int r = -EFAULT;
pagefault_disable();
if (lookup_bad_addr(VERIFY_READ, (uintptr_t)addr, size, seg))
r = -EFAULT;
else {
stp_mm_segment_t oldfs;
bool is_user;
/* NB just to suppress -Werror=maybe-uninitialized warnings from older
* GCC like version 8.3 with -O3 */
#ifdef STP_NUMERICAL_DS
oldfs = 0;
#else
memset(&oldfs, 0, sizeof(stp_mm_segment_t));
#endif
if (!stp_mem_access_begin(VERIFY_READ, addr, size, &oldfs, seg, &is_user))
goto done;
r = __stp_deref_nocheck_(pv, size, addr, seg);
stp_mem_access_end(oldfs, is_user);
}
done:
pagefault_enable();
return r;
}
#define _stp_deref_nofault(value, size, addr, seg) \
({ \
u64 _v = 0; int _e = -EFAULT; \
switch (size) \
{ \
case 1: case 2: case 4: case 8: \
_e = _stp_deref_nofault_ \
(&_v, (size), (void *)(uintptr_t)(addr), (seg)); \
break; \
default: \
__stp_get_user_bad(); \
} \
(value) = _v; \
_e; \
})
/*
* _stp_deref(): safely read a simple type from memory
*
* size: number of bytes to read
* addr: address to read from
* seg: memory segment to use, either kernel (STP_KERNEL_DS) or user
* (STP_USER_DS)
*
* The macro returns the value read. If this macro gets an error while
* trying to read memory, a DEREF_FAULT will occur. Note that the
* kernel will not pagefault when trying to read the memory.
*/
#define _stp_deref(size, addr, seg) \
({ \
u64 _v = 0; int _e = -EFAULT; \
switch (size) \
{ \
case 1: case 2: case 4: case 8: \
_e = _stp_deref_nofault_ \
(&_v, (size), (void *)(uintptr_t)(addr), (seg)); \
break; \
default: \
__stp_get_user_bad(); \
} \
if (_e) \
DEREF_FAULT(addr); \
_v; \
})
/*
* __stp_store_deref_nocheck(): writes a simple type to a location
* with no address sanity checking.
*
* size: number of bytes to write
* addr: address to write to
* value: read the simple type from this variable
* seg: memory segment to use, either kernel (STP_KERNEL_DS) or user
* (STP_USER_DS)
*
* Note that the caller *must* check the address for validity and do
* any other checks necessary. This macro is designed to be used as
* the base for the other macros more suitable for the rest of the
* code to use. Note that the caller is also responsible for ensuring
* that the kernel doesn't pagefault while writing.
*/
static inline int __stp_store_deref_nocheck_(size_t size, void *addr,
u64 v, stp_mm_segment_t seg)
{
int r;
switch (size)
{
case 1: r = __stp_put_either((u8)v, (u8 *)addr, seg); break;
case 2: r = __stp_put_either((u16)v, (u16 *)addr, seg); break;
case 4: r = __stp_put_either((u32)v, (u32 *)addr, seg); break;
#if defined(__i386__) || defined(__arm__)
/* x86 and arm can't do 8-byte put_user, so we have to split it */
default: { union { u32 l[2]; u64 ll; } val;
val.ll = v;
r = __stp_put_either(val.l[0], &((u32 *)addr)[0], seg);
if (! r)
r = __stp_put_either(val.l[1], &((u32 *)addr)[1], seg);
} break;
#else
default: r = __stp_put_either(v, (u64 *)addr, seg); break;
#endif
}
return r;
}
#define __stp_store_deref_nocheck(size, addr, value, seg) \
({ \
int _e = -EFAULT; \
switch (size) \
{ \
case 1: case 2: case 4: case 8: \
_e = __stp_store_deref_nocheck_ \
((size), (void *)(uintptr_t)(addr), (value), (seg)); \
break; \
default: \
__stp_put_user_bad(); \
} \
_e; \
})
/*
* _stp_store_deref(): safely write a simple type to memory
*
* size: number of bytes to write
* addr: address to write to
* value: read the simple type from this variable
* seg: memory segment to use, either kernel (STP_KERNEL_DS) or user
* (STP_USER_DS)
*
* The macro has no return value. If this macro gets an error while
* trying to write, a STORE_DEREF_FAULT will occur. Note that the
* kernel will not pagefault when trying to write the memory.
*/
static inline int _stp_store_deref_(size_t size, void *addr, u64 v,
stp_mm_segment_t seg)
{
int r;
stp_mm_segment_t oldfs;
bool is_user;
pagefault_disable();
if (lookup_bad_addr(VERIFY_WRITE, (uintptr_t)addr, size, seg)) {
r = -EFAULT;
} else {
if (!stp_mem_access_begin(VERIFY_WRITE, addr, size, &oldfs, seg, &is_user)) {
r = -EFAULT;
goto done;
}
r = __stp_store_deref_nocheck_(size, addr, v, seg);
stp_mem_access_end(oldfs, is_user);
}
done:
pagefault_enable();
return r;
}
#define _stp_store_deref(size, addr, value, seg) \
({ \
int _e = -EFAULT; \
switch (size) \
{ \
case 1: case 2: case 4: case 8: \
_e = _stp_store_deref_ \
((size), (void *)(uintptr_t)(addr), (value), (seg)); \
break; \
default: \
__stp_put_user_bad(); \
} \
if (_e) \
STORE_DEREF_FAULT(addr); \
(void)0; \
})
/* Map kderef/uderef to the generic segment-aware deref macros. */
#ifndef kderef
#define kderef(s,a) _stp_deref(s,a,STP_KERNEL_DS)
#endif
#ifndef store_kderef
#define store_kderef(s,a,v) _stp_store_deref(s,a,v,STP_KERNEL_DS)
#endif
#ifndef uderef
#define uderef(s,a) _stp_deref(s,a,STP_USER_DS)
#endif
#ifndef store_uderef
#define store_uderef(s,a,v) _stp_store_deref(s,a,v,STP_USER_DS)
#endif
#ifndef CONFIG_64BIT
/* The kderef/uderef macros (which is what Xderef gets set to), alway
* returns a 64-bit value. This causes a problem on a 32-bit system
* when we want to cast the 64-bit value to a 32-bit pointer - gcc
* gives a "cast to pointer from integer of different size" error. So,
* we'll cast it to a u32 before doing the final cast to the actual
* type. */
#define __Xread(ptr, Xderef) \
((sizeof(*(ptr)) == 8) \
? *(typeof(ptr))&(u64) { Xderef(sizeof(*(ptr)), (ptr)) } \
: *(typeof(ptr))&(u32) { (u32) Xderef(sizeof(*(ptr)), (ptr)) } )
/* For __Xwrite, we need to handle the case where 'value' is a pointer
* and avoid the "cast from pointer to integer of different size" gcc
* errors. */
#define __Xwrite(ptr, value, store_Xderef) \
({ \
if (sizeof(*(ptr)) == 8) { \
union { typeof(*(ptr)) v; u64 l; } _kw; \
_kw.v = (typeof(*(ptr)))(value); \
store_Xderef(8, (ptr), _kw.l); \
} else \
store_Xderef(sizeof(*(ptr)), (ptr), (long)(typeof(*(ptr)))(value)); \
})
#else
#define __Xread(ptr, Xderef) \
( (typeof(*(ptr))) Xderef(sizeof(*(ptr)), (ptr)) )
#define __Xwrite(ptr, value, store_Xderef) \
( store_Xderef(sizeof(*(ptr)), (ptr), (long)(typeof(*(ptr)))(value)) )
#endif
#define kread(ptr) __Xread((ptr), kderef)
#define uread(ptr) __Xread((ptr), uderef)
#define kwrite(ptr, value) __Xwrite((ptr), (value), store_kderef)
#define uwrite(ptr, value) __Xwrite((ptr), (value), store_uderef)
/* Dereference a kernel buffer ADDR of size MAXBYTES. Put the bytes in
* address DST (which can be NULL).
*
* This function is useful for reading memory when the size isn't a
* size that kderef() handles. This function is very similar to
* kderef_string(), but kderef_buffer() doesn't quit when finding a
* '\0' byte or append a '\0' byte.
*/
static inline char *kderef_buffer_(char *dst, void *addr, size_t len)
{
int err = 0;
size_t i;
#ifdef STAPCONF_SET_FS
mm_segment_t oldfs = get_fs();
set_fs(KERNEL_DS);
#endif
pagefault_disable();
if (lookup_bad_addr(VERIFY_READ, (uintptr_t)addr, len, STP_KERNEL_DS))
err = 1;
else
for (i = 0; i < len; ++i)
{
u8 v;
err = __stp_get_either(v, (u8 *)addr + i, STP_KERNEL_DS);
if (err)
break;
if (dst)
*dst++ = v;
}
pagefault_enable();
#ifdef STAPCONF_SET_FS
set_fs(oldfs);
#endif
return err ? (char *)-1 : dst;
}
#define kderef_buffer(dst, addr, maxbytes) \
({ \
char *_r = kderef_buffer_((dst), (void *)(uintptr_t)(addr), (maxbytes)); \
if (_r == (char *)-1) \
DEREF_FAULT(addr); \
_r; \
})
/*
* _stp_deref_string_nofault(): safely read a string from memory
* without a DEREF_FAULT on error
*
* dst: read the string into this address
* addr: address to read from
* len: maximum number of bytes to store in dst, including the trailing NUL
* seg: memory segment to use, either kernel (STP_KERNEL_DS) or user
* (STP_USER_DS)
*
* If this function gets an error while trying to read memory, -EFAULT
* is returned. On success, the number of bytes copied is returned
* (not including the trailing NULL). Note that the kernel will not
* pagefault when trying to read the string.
*/
static inline long _stp_deref_string_nofault(char *dst, const char *addr,
size_t len, stp_mm_segment_t seg)
{
int err = 0;
size_t i = 0;
stp_mm_segment_t oldfs;
bool is_user;
pagefault_disable();
if (lookup_bad_addr(VERIFY_READ, (uintptr_t)addr, len, seg))
err = 1;
else
{
if (!stp_mem_access_begin(VERIFY_READ, addr, len, &oldfs, seg, &is_user))
goto done;
/* Reduce len by 1 to leave room for '\0' terminator. */
for (i = 0; i + 1 < len; ++i)
{
u8 v;
err = __stp_get_either(v, (u8 *)addr + i, seg);
if (err || v == '\0')
break;
if (dst)
*dst++ = v;
}
if (!err && dst)
*dst = '\0';
stp_mem_access_end(oldfs, is_user);
}
done:
pagefault_enable();
return err ? -EFAULT : i;
}
#define kderef_string(dst, addr, maxbytes) \
({ \
long _r = _stp_deref_string_nofault((dst), (void *)(uintptr_t)(addr), (maxbytes), STP_KERNEL_DS); \
if (_r < 0) \
DEREF_FAULT(addr); \
_r; \
})
/*
* _stp_store_deref_string(): safely write a string to memory
*
* src: source string
* addr: address to write to
* maxbytes: maximum number of bytes to write
* seg: memory segment to use, either kernel (STP_KERNEL_DS) or user
* (STP_USER_DS)
*
* The macro has no return value. If this macro gets an error while
* trying to write, a STORE_DEREF_FAULT will occur. Note that the
* kernel will not pagefault when trying to write the memory.
*/
static inline int _stp_store_deref_string_(char *src, void *addr, size_t len,
stp_mm_segment_t seg)
{
int err = 0;
size_t i;
stp_mm_segment_t oldfs;
bool is_user;
pagefault_disable();
if (lookup_bad_addr(VERIFY_WRITE, (uintptr_t)addr, len, seg)) {
err = 1;
goto done;
}
if (!stp_mem_access_begin(VERIFY_WRITE, addr, len, &oldfs, seg, &is_user))
goto done;
if (len > 0)
{
for (i = 0; i < len - 1; ++i)
{
if (*src == '\0')
break;
err = __stp_put_either(*src++, (u8 *)addr + i, seg);
if (err)
goto out;
}
/* PR31074: cast (char) '\0' to make sure right size */
err = __stp_put_either((char) '\0', (u8 *)addr + i, seg);
}
out:
stp_mem_access_end(oldfs, is_user);
done:
pagefault_enable();
return err;
}
#define _stp_store_deref_string(src, addr, maxbytes, seg) \
({ \
if (_stp_store_deref_string_ \
((src), (void *)(uintptr_t)(addr), (maxbytes), (seg))) \
STORE_DEREF_FAULT(addr); \
(void)0; \
})
/*
* store_kderef_string(): safely write a string to kernel memory
*
* src: source string
* addr: address to write to
* maxbytes: maximum number of bytes to write
*
* The macro has no return value. If this macro gets an error while
* trying to write, a STORE_DEREF_FAULT will occur. Note that the
* kernel will not pagefault when trying to write the memory.
*/
#define store_kderef_string(src, addr, maxbytes) \
_stp_store_deref_string((src), (addr), (maxbytes), STP_KERNEL_DS)
/*
* store_uderef_string(): safely write a string to user memory
*
* src: source string
* addr: address to write to
* maxbytes: maximum number of bytes to write
*
* The macro has no return value. If this macro gets an error while
* trying to write, a STORE_DEREF_FAULT will occur. Note that the
* kernel will not pagefault when trying to write the memory.
*/
#define store_uderef_string(src, addr, maxbytes) \
_stp_store_deref_string((src), (addr), (maxbytes), STP_USER_DS)
#endif /* _LINUX_LOC2C_RUNTIME_H_ */
|