1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
/* -*- linux-c -*-
* Map Runtime Functions
* Copyright (C) 2012-2016 Red Hat Inc.
*
* This file is part of systemtap, and is free software. You can
* redistribute it and/or modify it under the terms of the GNU General
* Public License (GPL); either version 2, or (at your option) any
* later version.
*/
#ifndef _LINUX_MAP_RUNTIME_H_
#define _LINUX_MAP_RUNTIME_H_
/* get/put_cpu wrappers. Unnecessary if caller is already atomic. */
#define MAP_GET_CPU() smp_processor_id()
#define MAP_PUT_CPU() do {} while (0)
struct pmap {
int bit_shift; /* scale factor for integer arithmetic */
int stat_ops; /* related statistical operators */
MAP agg; /* aggregation map */
MAP *map; /* per-cpu maps */
};
static inline MAP _stp_pmap_get_agg(PMAP p)
{
return p->agg;
}
static inline void _stp_pmap_set_agg(PMAP p, MAP agg)
{
p->agg = agg;
}
static inline MAP _stp_pmap_get_map(PMAP p, unsigned cpu)
{
return *per_cpu_ptr(p->map, cpu);
}
static inline void _stp_pmap_set_map(PMAP p, MAP m, unsigned cpu)
{
*per_cpu_ptr(p->map, cpu) = m;
}
/** Deletes a map.
* Deletes a map, freeing all memory in all elements.
* Normally done only when the module exits.
* @param map
*/
static void _stp_map_del(MAP map)
{
if (map == NULL)
return;
if (map->node_mem)
_stp_vfree(map->node_mem);
_stp_vfree(map);
}
static void _stp_pmap_del(PMAP pmap)
{
int i;
if (pmap == NULL)
return;
/* NB We cannot use the for_each_online_cpu() here since online
* CPUs may get changed on-the-fly through the CPU hotplug feature
* of the kernel. We only allocated the context structs on original
* online CPUs when _stp_pmap_new() was called.
*/
for_each_possible_cpu(i) {
MAP m = _stp_pmap_get_map (pmap, i);
if (likely(m))
_stp_map_del(m);
}
_stp_free_percpu (pmap->map);
/* free agg map elements */
_stp_map_del(_stp_pmap_get_agg(pmap));
_stp_vfree(pmap);
}
static void*
_stp_map_vzalloc(size_t size, int cpu)
{
/* Called from module_init, so user context, may sleep alloc. */
if (cpu < 0)
return _stp_vzalloc(size);
return _stp_vzalloc_node(size, cpu_to_node(cpu));
}
static int
_stp_map_init(MAP m, unsigned max_entries, unsigned hash_table_mask,
int wrap, int node_size, int cpu)
{
unsigned i;
INIT_MLIST_HEAD(&m->pool);
INIT_MLIST_HEAD(&m->head);
m->hash_table_mask = hash_table_mask;
for (i = 0; i <= hash_table_mask; i++)
INIT_MHLIST_HEAD(&m->hashes[i]);
m->maxnum = max_entries;
m->wrap = wrap;
/* Since we're using _stp_map_vzalloc(), we can afford to
* allocate the nodes in one big chunk. */
m->node_mem = _stp_map_vzalloc(node_size * max_entries, cpu);
if (m->node_mem == NULL)
return -1;
for (i = 0; i < max_entries; i++) {
struct map_node *node = m->node_mem + i * node_size;
mlist_add(&node->lnode, &m->pool);
INIT_MHLIST_NODE(&node->hnode);
}
return 0;
}
/** Create a new map.
* Maps must be created at module initialization time.
* @param max_entries The maximum number of entries allowed. Currently that
* number will be preallocated.If more entries are required, the oldest ones
* will be deleted. This makes it effectively a circular buffer.
* @return A MAP on success or NULL on failure.
* @ingroup map_create
*/
static MAP
_stp_map_new(unsigned max_entries, int wrap, int node_size, int cpu)
{
MAP m;
unsigned hash_table_mask = HASHTABLESIZE(max_entries)-1; /* usable as bitmask */
m = _stp_map_vzalloc(sizeof(struct map_root) +
sizeof(struct mhlist_head) * (hash_table_mask+1),
cpu);
if (m == NULL)
return NULL;
if (_stp_map_init(m, max_entries, hash_table_mask, wrap, node_size, cpu)) {
_stp_map_del(m);
return NULL;
}
return m;
}
static PMAP
_stp_pmap_new(unsigned max_entries, int wrap, int node_size)
{
int i;
MAP m;
PMAP pmap = _stp_map_vzalloc(sizeof(struct pmap), -1);
if (unlikely(pmap == NULL))
return NULL;
pmap->map = _stp_alloc_percpu (sizeof(MAP));
if (unlikely(pmap->map == NULL)) {
_stp_vfree(pmap);
return NULL;
}
/* Allocate the per-cpu maps. */
/* We don't use for_each_possible_cpu() here since the number of possible
* CPUs may be very large even though there are many fewere online CPUs.
* For example, VMWare guests usually have 128 possible CPUs while only
* have a few online CPUs. Once the context structs were
* allocated for online CPUs at this point, we will discard any context
* fetching operations on any future online CPUs dynamically added
* through the kernel's CPU hotplug feature. Memory allocations of the
* context structs can only happen right here.
*/
for_each_online_cpu(i) {
m = _stp_map_new(max_entries, wrap, node_size, i);
if (unlikely(m == NULL))
goto err1;
_stp_pmap_set_map(pmap, m, i);
}
/* Allocate the aggregate map. */
m = _stp_map_new(max_entries, wrap, node_size, -1);
if (m == NULL)
goto err1;
_stp_pmap_set_agg(pmap, m);
return pmap;
err1:
for_each_possible_cpu(i) {
m = _stp_pmap_get_map (pmap, i);
if (likely(m))
_stp_map_del(m);
}
_stp_free_percpu (pmap->map);
_stp_vfree(pmap);
return NULL;
}
#endif /* _LINUX_MAP_RUNTIME_H_ */
|