1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
/* -*- linux-c -*-
* Context Runtime Functions
* Copyright (C) 2014 Red Hat Inc.
*
* This file is part of systemtap, and is free software. You can
* redistribute it and/or modify it under the terms of the GNU General
* Public License (GPL); either version 2, or (at your option) any
* later version.
*/
#ifndef _LINUX_RUNTIME_CONTEXT_H_
#define _LINUX_RUNTIME_CONTEXT_H_
/* Can't use a lock primitive for this because lock_acquire() has tracepoints */
static atomic_t _stp_contexts_busy_ctr = ATOMIC_INIT(0);
/* Per-cpu data is always initialized with zero filled. */
static DEFINE_PER_CPU(struct context *, contexts);
static int _stp_runtime_contexts_alloc(void)
{
unsigned int cpu;
/* We don't use for_aech_possible_cpu() here since the number of possible
* CPUs may be very large even though there are many fewere online CPUs.
* For example, VMWare guests usually have 128 possible CPUs while only
* have a few online CPUs. Once the context structs were
* allocated for online CPUs at this point, we will discard any context
* fetching operations on any future online CPUs dynamically added
* through the kernel's CPU hotplug feature. Memory allocations of the
* context structs can only happen right here.
*/
for_each_online_cpu(cpu) {
/* Module init, so in user context, safe to use
* "sleeping" allocation. */
struct context *c = _stp_vzalloc_node(sizeof (struct context),
cpu_to_node(cpu));
if (unlikely(c == NULL)) {
_stp_error ("context (size %lu per cpu) allocation failed",
(unsigned long) sizeof (struct context));
return -ENOMEM;
}
per_cpu(contexts, cpu) = c;
}
return 0;
}
static bool _stp_runtime_context_trylock(void)
{
bool locked;
/* Need to disable preemption because of the smp_processor_id() call
in _stp_runtime_get_context(). */
preempt_disable();
/* fast path to ignore new online CPUs without percpu context memory
* allocations. this also serves as an extra safe guard for NULL context
* pointers. */
if (unlikely(_stp_runtime_get_context() == NULL)) {
preempt_enable_no_resched();
return false;
}
locked = atomic_add_unless(&_stp_contexts_busy_ctr, 1, INT_MAX);
if (!locked)
preempt_enable_no_resched();
return locked;
}
static void _stp_runtime_context_unlock(void)
{
atomic_dec(&_stp_contexts_busy_ctr);
preempt_enable_no_resched();
}
/* We should be free of all probes by this time, but for example the timer for
* _stp_ctl_work_callback may still be running and looking for contexts. We
* use _stp_contexts_busy_ctr to be sure its safe to free them. */
static void _stp_runtime_contexts_free(void)
{
unsigned int cpu;
/* Sync to make sure existing readers are done */
while (atomic_cmpxchg(&_stp_contexts_busy_ctr, 0, INT_MAX))
cpu_relax();
/* Now we can actually free the contexts */
/* NB We cannot use the for_each_online_cpu() here since online
* CPUs may get changed on-the-fly through the CPU hotplug feature
* of the kernel. We only allocated the context structs on original
* online CPUs when _stp_runtime_contexts_alloc() was called. And we
* cannot allocate new memory from within this context. */
for_each_possible_cpu(cpu) {
struct context *c = per_cpu(contexts, cpu);
if (likely(c))
_stp_vfree(c);
}
}
static inline struct context * _stp_runtime_get_context(void)
{
return per_cpu(contexts, smp_processor_id());
}
static struct context * _stp_runtime_entryfn_get_context(void)
{
struct context* __restrict__ c = NULL;
if (!_stp_runtime_context_trylock())
return NULL;
c = _stp_runtime_get_context();
if (c != NULL) {
if (!atomic_cmpxchg(&c->busy, 0, 1)) {
// NB: Notice we're not releasing _stp_contexts_busy_ctr
// here. We exepect the calling code to call
// _stp_runtime_entryfn_get_context() and
// _stp_runtime_entryfn_put_context() as a
// pair.
return c;
}
}
_stp_runtime_context_unlock();
return NULL;
}
static inline void _stp_runtime_entryfn_put_context(struct context *c)
{
if (c) {
atomic_set(&c->busy, 0);
_stp_runtime_context_unlock();
}
}
static void _stp_runtime_context_wait(void)
{
int holdon;
unsigned long hold_start;
int hold_index;
hold_start = jiffies;
hold_index = -1;
do {
int i;
holdon = 0;
if (!_stp_runtime_context_trylock())
break;
for_each_possible_cpu(i) {
struct context *c = per_cpu(contexts, i);
if (c != NULL
&& atomic_read (& c->busy)) {
holdon = 1;
/* Just in case things are really
* stuck, let's print some diagnostics. */
if (time_after(jiffies, hold_start + HZ) // > 1 second
&& (i > hold_index)) { // not already printed
hold_index = i;
printk(KERN_ERR "%s context[%d] stuck: %s\n", THIS_MODULE->name, i, c->probe_point);
}
}
}
_stp_runtime_context_unlock();
/*
* Just in case things are really really stuck, a
* handler probably suffered a fault, and the kernel
* probably killed a task/thread already. We can't be
* quite sure in what state everything is in, however
* auxiliary stuff like kprobes / uprobes / locks have
* already been unregistered. So it's *probably* safe
* to pretend/assume/hope everything is OK, and let
* the cleanup finish.
*
* In the worst case, there may occur a fault, as a
* genuinely running probe handler tries to access
* script globals (about to be freed), or something
* accesses module memory (about to be unloaded).
* This is sometimes stinky, so the alternative
* (default) is to change from a livelock to a
* livelock that sleeps awhile.
*/
#ifdef STAP_OVERRIDE_STUCK_CONTEXT
if (time_after(jiffies, hold_start + HZ*10)) { // > 10 seconds
printk(KERN_ERR "%s overriding stuck context to allow module shutdown.", THIS_MODULE->name);
holdon = 0; // allow loop to exit
}
#else
/* at least stop sucking down the staprun cpu */
msleep(250);
#endif
/* NB: we run at least one of these during the
* shutdown sequence: */
yield(); /* aka schedule() and then some */
} while (holdon);
}
#endif /* _LINUX_RUNTIME_CONTEXT_H_ */
|