1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
|
// stapdyn mutatee functions
// Copyright (C) 2012-2019 Red Hat Inc.
//
// This file is part of systemtap, and is free software. You can
// redistribute it and/or modify it under the terms of the GNU General
// Public License (GPL); either version 2, or (at your option) any
// later version.
#include "mutatee.h"
extern "C" {
#include <signal.h>
#include <sys/types.h>
}
#include <dyninst/BPatch_function.h>
#include <dyninst/BPatch_image.h>
#include <dyninst/BPatch_module.h>
#include <dyninst/BPatch_point.h>
#include <dyninst/BPatch_thread.h>
#include "dynutil.h"
#include "../util.h"
extern "C" {
#include "../runtime/dyninst/stapdyn.h"
}
using namespace std;
// Create snippets for all the DWARF registers,
// in their architecture-specific order.
static void
get_dwarf_registers(BPatch_process *app,
vector<BPatch_snippet*>& registers)
{
static const char* const names[] = {
#if defined(__i386__)
"eax", "ecx", "edx", "ebx",
"esp", "ebp", "esi", "edi",
#elif defined(__x86_64__)
"rax", "rdx", "rcx", "rbx",
"rsi", "rdi", "rbp", "rsp",
"r8", "r9", "r10", "r11",
"r12", "r13", "r14", "r15",
#elif defined(__powerpc__) || defined(__powerpc64__)
"r0", "r1", "r2", "r3",
"r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11",
"r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19",
"r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27",
"r28", "r29", "r30", "r31",
#elif defined(__aarch64__)
"r0", "r1", "r2", "r3",
"r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11",
"r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19",
"r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27",
"r28", "r29", "r30", "r31",
#endif
NULL };
// First push the original PC, before instrumentation mucked anything up.
// (There's also BPatch_actualAddressExpr for the instrumented result...)
registers.push_back(new BPatch_originalAddressExpr());
vector<BPatch_register> bpregs;
app->getRegisters(bpregs);
ostream& debug_reg = staplog(4);
debug_reg << "pid " << app->getPid() << " has "
<< bpregs.size() << " registers available:";
for (size_t i = 0; i < bpregs.size(); ++i)
debug_reg << " " << bpregs[i].name();
debug_reg << endl;
// Look for each DWARF register in BPatch's register set.
// O(m*n) loop, but neither array is very large
for (const char* const* name = names; *name; ++name)
{
size_t i;
for (i = 0; i < bpregs.size(); ++i)
if (bpregs[i].name() == *name)
{
// Found it, add a snippet.
registers.push_back(new BPatch_registerExpr(bpregs[i]));
break;
}
}
}
// Simple object to temporarily make sure a process is stopped
class mutatee_freezer {
mutatee& m;
bool already_stopped;
public:
mutatee_freezer(mutatee& m):
m(m), already_stopped(m.is_stopped())
{
// If process is currently running, stop it.
if (!already_stopped && !m.stop_execution())
{
staplog(3) << "stopping process failed, stopped="
<< m.is_stopped() << ", terminated="
<< m.is_terminated() << endl;
}
}
~mutatee_freezer()
{
// Let the process continue (if it wasn't stopped when we started).
if (!already_stopped)
m.continue_execution();
}
};
mutatee::mutatee(BPatch_process* process):
pid(process? process->getPid() : 0),
process(process), stap_dso(NULL),
utrace_enter_function(NULL)
{
get_dwarf_registers(process, registers);
}
mutatee::~mutatee()
{
remove_instrumentation();
unload_stap_dso();
if (process)
process->detach(true);
}
// Inject the stap module into the target process
bool
mutatee::load_stap_dso(const string& filename)
{
stap_dso = process->loadLibrary(filename.c_str());
if (!stap_dso)
{
staperror() << "Couldn't load " << filename
<< " into the target process" << endl;
return false;
}
return true;
}
// Unload the stap module from the target process
void
mutatee::unload_stap_dso()
{
if (!process || !stap_dso)
return;
// XXX Dyninst has no unloadLibrary() yet, as of 8.0
stap_dso = NULL;
}
void
mutatee::update_semaphores(unsigned short delta, size_t start)
{
if (!process || process->isTerminated())
return;
for (size_t i=start; i < semaphores.size(); ++i)
{
unsigned short value = 0;
BPatch_variableExpr* semaphore = semaphores[i];
// Read-modify-write the semaphore remotely.
semaphore->readValue(&value, (int)sizeof(value));
value += delta;
semaphore->writeValue(&value, (int)sizeof(value));
}
// NB: Alternatively, we could build up a oneTimeCode snippet to do them all
// at once within the target process. For now, remote seems good enough.
}
void
mutatee::call_utrace_dynprobes(const vector<dynprobe_location>& probes,
BPatch_thread* thread)
{
if (!stap_dso || probes.empty())
return;
if (utrace_enter_function == NULL)
{
vector<BPatch_function *> functions;
stap_dso->findFunction("enter_dyninst_utrace_probe",
functions);
if (!functions.empty())
utrace_enter_function = functions[0];
else
{
staplog(1) << "no utrace enter function in pid " << pid << "!" << endl;
return;
}
}
for (size_t i = 0; i < probes.size(); ++i)
{
const dynprobe_location& probe = probes[i];
vector<BPatch_snippet *> args;
args.push_back(new BPatch_constExpr((int64_t)probe.index));
args.push_back(new BPatch_constExpr((void*)NULL)); // pt_regs
BPatch_funcCallExpr call(*utrace_enter_function, args);
staplog(3) << "calling utrace function in pid " << pid
<< " for probe index " << probe.index << endl;
if (thread)
thread->oneTimeCode(call);
else
process->oneTimeCode(call);
}
}
// Remember utrace probes. They get handled when the associated
// callback hits.
void
mutatee::instrument_utrace_dynprobe(const dynprobe_location& probe)
{
// Just remember this probe. It will get called from a callback function.
attached_probes.push_back(probe);
}
// Handle "global" targets. They aren't really global, but non-path
// based probes, like:
// probe process.begin { ... }
// probe process(PID).begin { ... }
void
mutatee::instrument_global_dynprobe_target(const dynprobe_target& target)
{
staplog(1) << "found global target in pid " << pid << ", inserting "
<< target.probes.size() << " probes" << endl;
for (size_t j = 0; j < target.probes.size(); ++j)
{
const dynprobe_location& probe = target.probes[j];
// We already know this isn't a path-based probe. We've got 2
// other qualifications here:
// (1) Make sure this is a utrace probe by checking the flags.
// (2) If PID was specified, does the pid match?
if (((probe.flags & (STAPDYN_PROBE_FLAG_PROC_BEGIN
| STAPDYN_PROBE_FLAG_PROC_END
| STAPDYN_PROBE_FLAG_THREAD_BEGIN
| STAPDYN_PROBE_FLAG_THREAD_END)) != 0)
&& (probe.offset == 0 || (int)probe.offset == process->getPid()))
instrument_utrace_dynprobe(probe);
}
}
// Given a target and the matching object, instrument all of the probes
// with calls to the stap_dso's entry function.
void
mutatee::instrument_dynprobe_target(BPatch_object* object,
const dynprobe_target& target)
{
if (!process || !stap_dso || !object)
return;
vector<BPatch_function *> functions;
BPatch_function* enter_function = NULL;
bool use_pt_regs = false;
staplog(1) << "found target \"" << target.path << "\" in pid " << pid
<< ", inserting " << target.probes.size() << " probes" << endl;
process->beginInsertionSet();
for (size_t j = 0; j < target.probes.size(); ++j)
{
const dynprobe_location& probe = target.probes[j];
// powerpc64 or arch64 (with r31 patch): 32 registers + IP
const int ppc_and_aarch_register_count = 33;
if ((probe.flags & (STAPDYN_PROBE_FLAG_PROC_BEGIN
| STAPDYN_PROBE_FLAG_PROC_END
| STAPDYN_PROBE_FLAG_THREAD_BEGIN
| STAPDYN_PROBE_FLAG_THREAD_END)) != 0)
{
instrument_utrace_dynprobe(probe);
continue;
}
if (! enter_function)
{
// XXX Until we know how to build pt_regs from here, we'll
// try the entry function for individual registers first.
if (!registers.empty())
stap_dso->findFunction("enter_dyninst_uprobe_regs", functions,
false);
if (!functions.empty())
enter_function = functions[0];
// If the other entry wasn't found, or we don't have
// registers for it anyway, try the form that takes pt_regs*
// and we'll just pass NULL.
if (!enter_function)
{
stap_dso->findFunction("enter_dyninst_uprobe", functions,
false);
if (functions.empty())
{
stapwarn() << "Couldn't find the uprobe entry function (either " << endl
<< "\"enter_dyninst_uprobe_regs\" or \"enter_dyninst_uprobe\"). Uprobe probes"
<< endl << "disabled." << endl;
return;
}
use_pt_regs = true;
enter_function = functions[0];
}
}
// Convert the file offset to a memory address.
Dyninst::Address address = object->fileOffsetToAddr(probe.offset);
if (address == BPatch_object::E_OUT_OF_BOUNDS)
{
stapwarn() << "Couldn't convert " << target.path << "+"
<< lex_cast_hex(probe.offset) << " to an address" << endl;
continue;
}
// Turn the address into instrumentation points.
// NB: There may be multiple results if Dyninst determined that multiple
// concrete functions have overlapping ranges. Rare, but possible.
vector<BPatch_point*> points;
object->findPoints(address, points);
if (points.empty())
{
stapwarn() << "Couldn't find an instrumentation point at "
<< lex_cast_hex(address) << ", " << target.path
<< "+" << lex_cast_hex(probe.offset) << endl;
continue;
}
// Check that the functions containing each point are actually
// instrumentable. Unfortunately, findPoints doesn't make any
// distinction, and insertSnippet doesn't tell us either, so this
// is the best way we have to let the user know.
vector<BPatch_point*> instrumentable_points;
for (size_t i = 0; i < points.size(); ++i)
if (points[i]->getFunction()->isInstrumentable())
instrumentable_points.push_back(points[i]);
else
stapwarn() << "Couldn't instrument the function containing "
<< lex_cast_hex(address) << ", " << target.path
<< "+" << lex_cast_hex(probe.offset) << endl;
points.swap(instrumentable_points);
if (probe.return_p)
{
// Transform the address points into function exits
vector<BPatch_point*> return_points;
for (size_t i = 0; i < points.size(); ++i)
{
vector<BPatch_point*>* exits =
points[i]->getFunction()->findPoint(BPatch_locExit);
if (!exits || exits->empty())
{
stapwarn() << "Couldn't find a return point from "
<< lex_cast_hex(address) << ", " << target.path
<< "+" << lex_cast_hex(probe.offset) << endl;
continue;
}
return_points.insert(return_points.end(),
exits->begin(), exits->end());
}
points.swap(return_points);
}
if (points.empty())
continue;
// The entry function needs the index of this particular probe, then
// the registers in whatever form we chose above.
vector<BPatch_snippet *> args;
args.push_back(new BPatch_constExpr((int64_t)probe.index));
if (use_pt_regs) {
args.push_back(new BPatch_constExpr((void*)NULL)); // pt_regs
BPatch_funcCallExpr call(*enter_function, args);
BPatchSnippetHandle* handle = process->insertSnippet(call, points);
if (handle)
snippets.push_back(handle);
}
else if (registers.size() == ppc_and_aarch_register_count)
{
// Save registers in chunks of six.
vector<BPatch_function *> functions;
stap_dso->findFunction("enter_dyninst_uprobe_partial_regs", functions, false);
if (functions.empty())
{
stapwarn() << "Couldn't find the uprobe entry function \"enter_dyninst_uprobe_partial_regs\""
<< endl << "disabled." << endl;
return;
}
BPatch_function* enter_function_partial_regs = functions[0];
args.insert(args.end(), 7, new BPatch_constExpr((int64_t)0));
bool ip_added = false;
long unsigned first_reg [] = {0, 6, 12, 18, 24, 30, 32};
for (int first = (sizeof(first_reg)/sizeof(long))-2; first >= 0; first--)
{
args[1] = new BPatch_constExpr((int64_t)first_reg[first]);
int argidx = 2;
for (long unsigned regidx = first_reg[first]; regidx < first_reg[first+1]; regidx++)
{
args[argidx++] = registers[regidx+1];
}
// registers[0] is BPatch_originalAddressExpr; append to the end
if (!ip_added) {
ip_added = true;
args[argidx] = registers[0];
}
BPatch_funcCallExpr call(*enter_function_partial_regs, args);
BPatchSnippetHandle* handle = process->insertSnippet(call, points);
if (handle)
snippets.push_back(handle);
}
}
else {
#if (defined(__powerpc__) || defined(__powerpc64__)) || defined(__aarch64__)
// In EmitterPOWER::emitCall(), Dyninst only uses register parm args.
// The case above should handle this except for older aarch64 backends
// which supported neither multiple calls nor the sp register
while (registers.size() > 6)
{
delete registers.back();
registers.pop_back();
}
#endif
args.push_back(new BPatch_constExpr((unsigned long)registers.size()));
args.insert(args.end(), registers.begin(), registers.end());
BPatch_funcCallExpr call(*enter_function, args);
BPatchSnippetHandle* handle = process->insertSnippet(call, points);
if (handle)
snippets.push_back(handle);
}
// Update SDT semaphores as needed.
if (probe.semaphore)
{
Dyninst::Address sem_address = object->fileOffsetToAddr(probe.semaphore);
if (sem_address == BPatch_object::E_OUT_OF_BOUNDS)
stapwarn() << "Couldn't convert semaphore " << target.path << "+"
<< lex_cast_hex(probe.offset) << " to an address" << endl;
else
{
// Create a variable to represent this semaphore
BPatch_type *sem_type = process->getImage()->findType("unsigned short");
BPatch_variableExpr *semaphore = process->createVariable(sem_address, sem_type);
if (semaphore)
semaphores.push_back(semaphore);
}
}
}
process->finalizeInsertionSet(false);
}
// Look for "global" (non-path based) probes and handle them.
void
mutatee::instrument_global_dynprobes(const vector<dynprobe_target>& targets)
{
if (!process || !stap_dso || targets.empty())
return;
// Look for global (non path-based probes), and remember them.
for (size_t i = 0; i < targets.size(); ++i)
{
const dynprobe_target& target = targets[i];
// Do the real work...
if (target.path.empty())
instrument_global_dynprobe_target(target);
}
}
// Look for all matches between this object and the targets
// we want to probe, then do the instrumentation.
void
mutatee::instrument_object_dynprobes(BPatch_object* object,
const vector<dynprobe_target>& targets)
{
if (!process || !stap_dso || !object || targets.empty())
return;
// We want to map objects by their full path, but the pathName from
// Dyninst might be relative, so fill it out.
string path = resolve_path(object->pathName());
staplog(2) << "found object \"" << path << "\" in pid " << pid << endl;
size_t semaphore_start = semaphores.size();
// Match the object to our targets, and instrument matches.
for (size_t i = 0; i < targets.size(); ++i)
{
const dynprobe_target& target = targets[i];
// Do the real work...
if (path == target.path)
instrument_dynprobe_target(object, target);
}
// Increment new semaphores
update_semaphores(1, semaphore_start);
}
void
mutatee::begin_callback(BPatch_thread *thread)
{
const vector<dynprobe_location>& proc_begin_probes =
find_attached_probes(STAPDYN_PROBE_FLAG_PROC_BEGIN);
// Shortcut out if there aren't any relevant probes
if (proc_begin_probes.empty())
return;
// process->oneTimeCode() requires that the process be stopped
mutatee_freezer mf(*this);
if (!is_stopped())
return;
staplog(2) << "firing " << proc_begin_probes.size()
<< " process.begin probes in pid " << pid << endl;
call_utrace_dynprobes(proc_begin_probes, thread);
}
// FIXME: When dyninst's registerExitCallback() hits, it's too late
// to stop the process and inject oneTimeCode() for process.end.
// So while the code here works for post-exec "end", for now the
// mutator::exit_callback() will run its probes locally in stapdyn.
void
mutatee::exit_callback(BPatch_thread *thread, bool exec_p)
{
const vector<dynprobe_location>& proc_end_probes =
exec_p ? exec_proc_end_probes
: find_attached_probes(STAPDYN_PROBE_FLAG_PROC_END);
// Shortcut out if there aren't any relevant probes
if (proc_end_probes.empty())
return;
// thread->oneTimeCode() requires that the process (not just the
// thread) be stopped. So, stop the process if needed.
mutatee_freezer mf(*this);
if (!is_stopped())
return;
staplog(2) << "firing " << proc_end_probes.size()
<< " process.end probes in pid " << pid << endl;
call_utrace_dynprobes(proc_end_probes, thread);
}
void
mutatee::thread_callback(BPatch_thread *thread, bool create_p)
{
const vector<dynprobe_location>& probes =
find_attached_probes(create_p
? STAPDYN_PROBE_FLAG_THREAD_BEGIN
: STAPDYN_PROBE_FLAG_THREAD_END);
// Shortcut out if there aren't any relevant probes
if (probes.empty())
return;
// If 'thread' is the main process, just return. We can't stop the
// process before it terminates.
if (thread->getLWP() == process->getPid())
return;
// thread->oneTimeCode() requires that the process (not just the
// thread) be stopped. So, stop the process if needed.
mutatee_freezer mf(*this);
if (!is_stopped())
return;
staplog(2) << "firing " << probes.size()
<< " process.thread." << (create_p ? "begin" : "end")
<< " probes in pid " << pid << endl;
call_utrace_dynprobes(probes, thread);
}
vector<dynprobe_location>
mutatee::find_attached_probes(uint64_t flag)
{
vector<dynprobe_location> probes;
for (size_t i = 0; i < attached_probes.size(); ++i)
{
const dynprobe_location& probe = attached_probes[i];
if (probe.flags & flag)
probes.push_back(probe);
}
return probes;
}
// Look for probe matches in all objects.
void
mutatee::instrument_dynprobes(const vector<dynprobe_target>& targets)
{
if (!process || !stap_dso || targets.empty())
return;
BPatch_image* image = process->getImage();
if (!image)
return;
// Match non object/path specific probes.
instrument_global_dynprobes(targets);
// Read all of the objects in the process.
vector<BPatch_object *> objects;
image->getObjects(objects);
for (size_t i = 0; i < objects.size(); ++i)
instrument_object_dynprobes(objects[i], targets);
}
// Copy data for forked instrumentation
void
mutatee::copy_forked_instrumentation(mutatee& other)
{
if (!process)
return;
// Freeze both processes, so we have a stable base.
mutatee_freezer mf_parent(other), mf(*this);
// Find the same stap module in the fork
if (other.stap_dso)
{
BPatch_image* image = process->getImage();
if (!image)
return;
string dso_path = other.stap_dso->pathName();
vector<BPatch_object *> objects;
image->getObjects(objects);
for (size_t i = 0; i < objects.size(); ++i)
if (objects[i]->pathName() == dso_path)
{
stap_dso = objects[i];
break;
}
}
// Get new handles for all inserted snippets
for (size_t i = 0; i < other.snippets.size(); ++i)
{
BPatchSnippetHandle *handle =
process->getInheritedSnippet(*other.snippets[i]);
if (handle)
snippets.push_back(handle);
}
// Get new variable representations of semaphores
for (size_t i = 0; i < other.semaphores.size(); ++i)
{
BPatch_variableExpr *semaphore =
process->getInheritedVariable(*other.semaphores[i]);
if (semaphore)
semaphores.push_back(semaphore);
}
// Update utrace probes to match, except PID-based probes.
// (A forked PID will never be the same as the parent.)
for (size_t i = 0; i < other.attached_probes.size(); ++i)
{
const dynprobe_location& probe = other.attached_probes[i];
if (probe.offset == 0)
instrument_utrace_dynprobe(probe);
}
}
// Reset instrumentation after an exec
void
mutatee::exec_reset_instrumentation()
{
// Reset members that are now out of date
stap_dso = NULL;
snippets.clear();
semaphores.clear();
// NB: the utrace process.end probes are saved, so they can run right
// before the new process does its process.begin.
exec_proc_end_probes = find_attached_probes(STAPDYN_PROBE_FLAG_PROC_END);
attached_probes.clear();
utrace_enter_function = NULL;
}
// Remove all BPatch snippets we've instrumented in the target
void
mutatee::remove_instrumentation()
{
if (!process || snippets.empty())
return;
process->beginInsertionSet();
for (size_t i = 0; i < snippets.size(); ++i)
process->deleteSnippet(snippets[i]);
process->finalizeInsertionSet(false);
snippets.clear();
// Decrement all semaphores
update_semaphores(-1);
semaphores.clear();
unload_stap_dso();
}
// Look up a function by name in the target and invoke it without parameters.
void
mutatee::call_function(const string& name)
{
vector<BPatch_snippet *> args;
call_function(name, args);
}
// Look up a function by name in the target and invoke it with parameters.
void
mutatee::call_function(const string& name,
const vector<BPatch_snippet *>& args)
{
if (!stap_dso)
return;
// process->oneTimeCode() requires that the process be stopped
mutatee_freezer mf(*this);
if (!is_stopped())
return;
vector<BPatch_function *> functions;
stap_dso->findFunction(name.c_str(), functions);
// XXX Dyninst can return multiple results, but we're not really
// expecting that... should we really call them all anyway?
for (size_t i = 0; i < functions.size(); ++i)
{
BPatch_funcCallExpr call(*functions[i], args);
staplog(3) << "calling function '" << name << "' in pid " << pid << endl;
process->oneTimeCode(call);
}
}
// Send a signal to the process.
int
mutatee::kill(int signal)
{
return pid ? ::kill(pid, signal) : -2;
}
void
mutatee::continue_execution()
{
if (is_stopped())
{
staplog(2) << "continuing execution of pid " << pid << endl;
process->continueExecution();
}
}
bool
mutatee::stop_execution()
{
if (process->isStopped())
{
// Process is already stopped, no need to do anything else.
return true;
}
staplog(2) << "stopping execution of pid " << pid << endl;
if (! process->stopExecution())
{
staplog(1) << "stopExecution on pid " << pid << " failed!" << endl;
return false;
}
if (! process->isStopped() || process->isTerminated())
{
staplog(1) << "couldn't stop pid " << pid << "!" << endl;
return false;
}
return true;
}
/* vim: set sw=2 ts=8 cino=>4,n-2,{2,^-2,t0,(0,u0,w1,M1 : */
|