File: stapregex-dfa.cxx

package info (click to toggle)
systemtap 5.1-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 47,964 kB
  • sloc: cpp: 80,838; ansic: 54,757; xml: 49,725; exp: 43,665; sh: 11,527; python: 5,003; perl: 2,252; tcl: 1,312; makefile: 1,006; javascript: 149; lisp: 105; awk: 101; asm: 91; java: 70; sed: 16
file content (1398 lines) | stat: -rw-r--r-- 42,972 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
// -*- C++ -*-
// Copyright (C) 2012-2018 Red Hat Inc.
//
// This file is part of systemtap, and is free software.  You can
// redistribute it and/or modify it under the terms of the GNU General
// Public License (GPL); either version 2, or (at your option) any
// later version.
//
// ---
//
// This file incorporates code from the re2c project; please see
// the file README.stapregex for details.

#include <string>
#include <iostream>
#include <sstream>
#include <set>
#include <list>
#include <map>
#include <vector>
#include <stack>
#include <queue>
#include <utility>
#include <climits>

#include "translator-output.h"
#include "util.h"

#include "stapregex-parse.h"
#include "stapregex-tree.h"
#include "stapregex-dfa.h"

// Uncomment to show result of ins (NFA) compilation:
//#define STAPREGEX_DEBUG_INS
// Uncomment to emit DFA in a non-working compact format (use with -p3):
//#define STAPREGEX_DEBUG_DFA
// Uncomment to have the generated engine do a trace of visited states
// (only when testing using the standalone regtest module):
//#define STAPREGEX_DEBUG_MATCH

// Uncomment for a detailed walkthrough of the tagged-NFA conversion:
//#define STAPREGEX_DEBUG_TNFA

using namespace std;

namespace stapregex {

regexp *pad_re = NULL;
regexp *fail_re = NULL;

dfa *
stapregex_compile (regexp *re, const std::string& match_snippet,
                   const std::string& fail_snippet)
{
  if (pad_re == NULL) {
    // build regexp for ".*"
    pad_re = make_dot ();
    pad_re = new close_op (pad_re, true); // -- prefer shorter match
    pad_re = new alt_op (pad_re, new null_op, true); // -- prefer second match
  }
  if (fail_re == NULL) {
    // build regexp for ".*$", but allow '\0' and support fail outcome
    fail_re = make_dot (true); // -- allow '\0'
    fail_re = new close_op (fail_re, true); // -- prefer shorter match
    fail_re = new alt_op (fail_re, new null_op, true); // -- prefer second match
    fail_re = new cat_op (fail_re, new anchor_op('$'));
    fail_re = new rule_op(fail_re, 0);
    // XXX: this approach creates one extra spurious-but-safe state
    // (safe because the matching procedure stops after encountering '\0')
  }

  vector<string> outcomes(2);
  outcomes[0] = fail_snippet;
  outcomes[1] = match_snippet;

  int num_tags = re->num_tags;

  // Pad & wrap re in appropriate rule_ops to control match behaviour:
  bool anchored = re->anchored ();
  if (!anchored) re = new cat_op(pad_re, re); // -- left-padding
  re = new rule_op(re, 1);
  re = new alt_op(re, fail_re);

#ifdef STAPREGEX_DEBUG_INS
  cerr << "RESULTING INS FROM REGEX " << re << ":" << endl;
#endif

  ins *i = re->compile();

#ifdef STAPREGEX_DEBUG_INS
  for (const ins *j = i; (j - i) < (int)re->ins_size() + 1; )
    {
      j = show_ins(cerr, j, i); cerr << endl;
    }
  cerr << endl;
#endif
  
  ins_optimize(i);
  for (ins *j = i; (j - i) < (int)re->ins_size() + 1; )
    {
      unmark(j);
      if (j->i.tag == CHAR)
        j = (ins *) j->i.link;
      else
        j++;
    }

#ifdef STAPREGEX_DEBUG_INS
  cerr << "OPTIMIZED INS FROM THE SAME REGEX" << endl;
  for (const ins *j = i; (j - i) < (int)re->ins_size() + 1; )
    {
      j = show_ins(cerr, j, i); cerr << endl;
    }
  cerr << endl;
#endif

  dfa *d = new dfa(i, num_tags, outcomes);

  // Carefully deallocate temporary scaffolding:
  if (!anchored) delete ((rule_op*) ((alt_op*) re)->a)->re; // -- new cat_op
  delete ((alt_op*) re)->a; // -- new rule_op
  delete re; // -- new alt_op
  // NB: deleting a regular expression DOES NOT deallocate its
  // children. The original re parameter is presumed to be retained
  // indefinitely as part of a stapdfa table, or such....

  return d;
}

// ------------------------------------------------------------------------

/* Now follows the heart of the tagged-DFA algorithm. This is a basic
   implementation of the algorithm described in Ville Laurikari's
   Main thesis and summarized in the paper "NFAs with Tagged
   Transitions, their Conversion to Deterministic Automata and
   Application to Regular Expressions"
   (http://laurikari.net/ville/spire2000-tnfa.pdf).

   HERE BE DRAGONS (and not the friendly kind) */

/* Functions to deal with relative transition priorities: */

arc_priority
refine_higher(const arc_priority& a)
{
  if (a.first > ULLONG_MAX/4) // detect overflow
    throw regex_error(_("arc_priority overflow due to excessive branching factor"), 0);
  return make_pair(2 * a.first + 1, a.second + 1);
}

arc_priority
refine_lower (const arc_priority& a)
{
  if (a.first > ULLONG_MAX/4) // detect overflow
    throw regex_error(_("arc_priority overflow due to excessive branching factor"), 0);
  return make_pair(2 * a.first, a.second + 1);
}

int
arc_compare (const arc_priority& a, const arc_priority& b)
{
  unsigned long x = a.first;
  unsigned long y = b.first;

  if (a.second > b.second)
    y = y << (a.second - b.second);
  else if (a.second < b.second)
    x = x << (b.second - a.second);

  // Special case: 0/n </> 0/m iff m </> n.
  // This is because such priorities are obtained by refine_lower().
  if (x == 0 && y == 0)
    return ( a.second == b.second ? 0 : a.second < b.second ? 1 : -1 );

  return ( x == y ? 0 : x < y ? -1 : 1 );
}

/* Manage the linked list of states in a DFA: */

state::state (dfa *owner, state_kernel *kernel)
  : owner(owner), label(~0), next(NULL), kernel(kernel),
    accepts(false), accept_outcome(0) {}

void
dfa::add_map_item (const map_item &m)
{
  // TODOXXX: later, compute a mapping into a single-level tag_states array
  // TODOXXX: could drop the +1 and instead subtract 1 in YYTAG macro
  nmapitems = max(nmapitems, m.second) + 1;
}

state *
dfa::add_state (state *s)
{
  s->label = nstates++;

  if (last == NULL)
    {
      last = s;
      first = last;
    }
  else
    {
      // append to the end
      last->next = s;
      last = last->next;
    }

  return last;
}

/* Operations to build a simple kernel prior to taking closure: */

/* Create a new kernel_point in kernel with empty map items. */
void
add_kernel (state_kernel *kernel, ins *i)
{
  kernel_point point;
  point.i = i;
  point.priority = MAKE_START_PRIORITY;
  // NB: point->map_items is empty

  kernel->push_back(point);
}

state_kernel *
make_kernel (ins *i)
{
  state_kernel *kernel = new state_kernel;
  add_kernel (kernel, i);
  return kernel;
}

struct sort_priorities {
  bool operator ()(const arc_priority &a, const arc_priority &b)
  {
    return arc_compare(a,b) > 0;
  }
};

struct sort_denominator {
  bool operator ()(const arc_priority &a, const arc_priority &b)
  {
    return a.second > b.second;
  }
};

struct sort_kernel_points {
  bool operator ()(const kernel_point &k, const kernel_point &l)
  {
    return arc_compare(k.priority, l.priority) > 0;
  }
};

// Move points from worklist to new_worklist while rebalancing priorities:
void
rebalance_priorities(stack<kernel_point> &worklist, stack<kernel_point> &new_worklist)
{
  // Sort worklist in order of priority:
  priority_queue<kernel_point, vector<kernel_point>, sort_kernel_points> sorted_worklist;
  while (!worklist.empty())
    {
      kernel_point point = worklist.top(); worklist.pop();
      sorted_worklist.push(point);
    }

  // Generate a 'clean' set of priorities:
  priority_queue<arc_priority, vector<arc_priority>, sort_priorities> sorted_priorities;
  priority_queue<arc_priority, vector<arc_priority>, sort_denominator> new_priorities;
  new_priorities.push(MAKE_START_PRIORITY);
  while (new_priorities.size() < sorted_worklist.size())
    {
      arc_priority new_priority = new_priorities.top(); new_priorities.pop();
      new_priorities.push(refine_higher(new_priority));
      new_priorities.push(refine_lower(new_priority));
    }
  for (unsigned i = 0; i < sorted_worklist.size(); i++)
    {
      arc_priority new_priority = new_priorities.top(); new_priorities.pop();
      sorted_priorities.push(new_priority);
    }

  while (!sorted_worklist.empty())
    {
      kernel_point point = sorted_worklist.top(); sorted_worklist.pop();
      arc_priority new_priority = sorted_priorities.top(); sorted_priorities.pop();
      point.priority = new_priority;
      new_worklist.push(point);
    }
}

/* Compute the set of kernel_points that are 'tag-wise unambiguously
   reachable' from a given initial set of points. Absent tagging, this
   becomes a bog-standard NFA e_closure construction. */
state_kernel *
te_closure (dfa *dfa, state_kernel *start, int ntags, bool is_initial = false)
{
  state_kernel *closure = new state_kernel(*start);
  stack<kernel_point> base_worklist; // -- with old priorities
  stack<kernel_point> worklist; // -- with rebalanced priorities
  // XXX: state_kernel is a list<kernel_point> so we avoid iterator
  // invalidation and make a new copy of each kernel_point from start

  /* To avoid searching through closure incessantly when retrieving
     information about existing elements, the following caches are
     needed: */
  vector<unsigned> max_tags (ntags, 0);
  map<ins *, list<list<kernel_point>::iterator> > closure_map;

  /* Cache initial elements of closure: */
  for (state_kernel::iterator it = closure->begin();
       it != closure->end(); it++)
    {
#if 0
      cerr << "**DEBUG** initial closure point ";
      it->print(cerr, dfa->orig_nfa);
      cerr << endl;
#endif

      base_worklist.push(*it); // -- push with existing priority, rebalance later

      // Store the element in relevant caches:

      for (list<map_item>::const_iterator jt = it->map_items.begin();
           jt != it->map_items.end(); jt++)
        max_tags[jt->first] = max(jt->second, max_tags[jt->first]);

      closure_map[it->i].push_back(it);
    }

  // PR23608: Retaining the priority from the previous state has the
  // potential to overflow the arc_priority representation with large
  // numbers when there are many distinct DFA states. This should
  // cause an explicit assertion failure if it occurs in practice (see
  // refine_*()), e.g. with long non-branching regexes such as
  // "aaaa...aaaaa".
  //
  // Fixed by adding an explicit step to rebalance priorities:
  rebalance_priorities(base_worklist, worklist);

  while (!worklist.empty())
    {
      kernel_point point = worklist.top(); worklist.pop();

      // Identify e-transitions depending on the opcode.
      // There are at most two e-transitions emerging from an insn.
      // If we have two e-transitions, the 'other' has higher priority.

      ins *target = NULL; int tag = -1;
      ins *other_target = NULL; int other_tag = -1;

      bool do_split = false;

      if (point.i->i.tag == TAG)
        {
          target = &point.i[1];
          tag = (int) point.i->i.param;
        }
      else if (point.i->i.tag == FORK && point.i == (ins *) point.i->i.link)
        {
          /* Workaround for a FORK that points to itself: */
          target = &point.i[1];
        }
      else if (point.i->i.tag == FORK)
        {
          do_split = true;
          // Relative priority of two e-transitions depends on param:
          if (point.i->i.param)
            {
              // Prefer jumping to link.
              target = &point.i[1];
              other_target = (ins *) point.i->i.link;
            }
          else
            {
              // Prefer stepping to next instruction.
              target = (ins *) point.i->i.link;
              other_target = &point.i[1];
            }
        }
      else if (point.i->i.tag == GOTO)
        {
          target = (ins *) point.i->i.link;
        }
      else if (point.i->i.tag == INIT && is_initial)
        {
          target = &point.i[1];
        }

      bool already_found;

      // Data for the endpoint of the first transition:
      kernel_point next;
      next.i = target;
      next.priority = do_split ? refine_lower(point.priority) : point.priority;
      next.map_items = point.map_items;

      // Date for the endpoint of the second transition:
      kernel_point other_next;
      other_next.i = other_target;
      other_next.priority = do_split ? refine_higher(point.priority) : point.priority;
      other_next.map_items = point.map_items;

      // Do infinite-loop-check:
      other_next.parents = point.parents;
      if (point.parents.find(other_next.i) != point.parents.end())
        {
          other_target = NULL;
          other_tag = -1;
        }
      other_next.parents.insert(other_next.i);

      next.parents = point.parents;
      if (point.parents.find(next.i) != point.parents.end())
        {
          // target = NULL;
          // tag = -1;
          // <- XXX will be overwritten by other_target / other_tag immediately
          goto next_target;
        }
      next.parents.insert(next.i);

    another_transition:
      if (target == NULL)
        continue;

      // Deal with the current e-transition:

      if (tag >= 0)
        {
          /* Delete all existing next.map_items of the form m[tag,x]. */
          for (list<map_item>::iterator it = next.map_items.begin();
               it != next.map_items.end(); )
            if (it->first == (unsigned) tag)
              {
                list<map_item>::iterator next_it = it;
                next_it++;
                next.map_items.erase (it);
                it = next_it;
              }
            else it++;

          /* Add m[tag,x] to next.map_items, where x is the smallest
             nonnegative integer such that m[tag,x] does not occur
             anywhere in closure. Then update the cache. */
          unsigned x = max_tags[tag];
          next.map_items.push_back(make_pair(tag, ++x));
          max_tags[tag] = x;
        }

      /* Deal with similar transitions that have a different priority: */
      already_found = false;
      for (list<list<kernel_point>::iterator>::iterator it
             = closure_map[next.i].begin();
           it != closure_map[next.i].end(); )
        {
          // NB: it is an iterator into closure_map[next.i],
          // while *it is an iterator into closure

          int result = arc_compare(next.priority, (*it)->priority);
          if (result == 0)
            {
              ins *base = dfa->orig_nfa;
              cerr << "stapregex **UNEXPECTED** -- identical arc_priorities for ";
              (*it)->print(cerr, base);
              cerr << " and ";
              next.print(cerr, base);
              cerr << endl;
            }
#if 0
          // XXX This is an experimental solution which did not work correctly.
          if (result == 0 && (*it)->i == next.i)
            {
              // Reached the same kernel_point via two alternate
              // (equal priority) paths. Merge map_items from next into *it:
              cerr << "**DEBUG** (merging paths for same ins)" << endl;
              for (list<map_item>::iterator jt = next.map_items.begin();
                   jt != next.map_items.end(); jt++)
                (*it)->map_items.push_back(*jt);
            }
          else
#endif
              assert (result != 0); // Expect this to fail.

          if (result > 0) { // i.e. next.priority > (*it)->priority
#if 0
            ins *base = dfa->orig_nfa;
            cerr << "**DEBUG** erasing ";
            (*it)->print(cerr, base);
            cerr << " in favour of ";
            next.print(cerr, base);
            cerr << endl;
#endif

            // next.priority is higher, delete existing element
            closure->erase(*it);

            // obnoxious shuffle to avoid iterator invalidation
            list<list<kernel_point>::iterator>::iterator old_it = it;
            it++;
            closure_map[next.i].erase(old_it);
            continue;
          } else { // result <= 0
            // next.priority is lower, skip adding next
            already_found = true;
          }

          it++;
        }

      if (!already_found) {
#if 0
        cerr << "**DEBUG** added to closure: ";
        next.print(cerr, dfa->orig_nfa);
        cerr << endl;
#endif

        // Store the element in closure:
        closure->push_back(next);
        worklist.push(next);

        // Store the element in relevant caches:

        list<kernel_point>::iterator next_it = closure->end();
        next_it --; // XXX rewind to just-pushed element
        closure_map[next.i].push_back(next_it);

        for (list<map_item>::iterator jt = next.map_items.begin();
             jt != next.map_items.end(); jt++)
          max_tags[jt->first] = max(jt->second, max_tags[jt->first]);

      }

    next_target:
      // Now move to dealing with the second e-transition, if any.
      target = other_target; other_target = NULL;
      tag = other_tag; other_tag = -1;
      next = other_next;

      goto another_transition;
    }

  return closure;
}

/* Helpers for constructing span table: */

bool
same_ins(list<kernel_point> &e1, list<kernel_point> &e2)
{
  set<ins *> s1;
  for (list<kernel_point>::iterator it = e1.begin();
       it != e1.end(); it++)
    s1.insert(it->i);
  set<ins *> s2;
  for (list<kernel_point>::iterator it = e2.begin();
       it != e2.end(); it++)
    s2.insert(it->i);
  return s1 == s2;
}

/* Helpers for constructing TDFA actions: */

/* Find the set of reordering commands (if any) that will get us from
   state s to some existing state in the dfa (returns the state in
   question, appends reordering commands to r). Returns NULL is no
   suitable state is found. */
state *
dfa::find_equivalent (state *s, tdfa_action &action)
{
  state *answer = NULL;

  for (state_kernel::iterator it = s->kernel->begin();
       it != s->kernel->end(); it++)
    mark(it->i);

  /* Check kernels of existing states for size equivalence and for
     unmarked items (similar to re2c's original algorithm): */
  unsigned n = s->kernel->size();
  map<map_item, map_item> shift_map;
  map<map_item, map_item> shift_back;
  for (state *t = first; t != NULL; t = t->next)
    {
      if (t->kernel->size() == n)
        {
          for (state_kernel::iterator it = t->kernel->begin();
               it != t->kernel->end(); it++)
              if (!marked(it->i)) 
                goto next_state;

          // Check for existence of a reordering tdfa_action r that will
          // produce identical kernel_points with identical map values.

          // XXX In the below code, we search for more-or-less an
          // arbitrary permutation of map values.
          //
          // To simplify the algorithm, we could instead only check
          // where lower-index map values are missing from s and
          // replace them with higher-index map values. The paper
          // claims this leads to only a slight penalty in number of
          // TDFA states.

          // Mapping must be one-to-one; check consistency in both directions:
          shift_map.clear(); // map item of s -> map item of t
          shift_back.clear(); // map item of t -> map item of s

          for (state_kernel::iterator it = s->kernel->begin();
               it != s->kernel->end(); it++)
            {
              kernel_point *kp1 = &*it;
              kernel_point *kp2 = 0;

              // Find matching kernel_point in t:
              bool found_kp = false;
              for (state_kernel::iterator jt = t->kernel->begin();
                   jt != t->kernel->end(); jt++)
                if (kp1->i == jt->i)
                  {
                    // XXX check that ins appears only once
                    assert (!found_kp);
                    kp2 = &*jt; // TODO found matching point
                    found_kp = true;
                  }
              assert(found_kp);

              set<int> seen_tags;
              for (list<map_item>::iterator jt = kp1->map_items.begin();
                   jt != kp1->map_items.end(); jt++)
                {
                  map_item mt1 = *jt;
                  map_item mt2;

                  // XXX check that tag appears only once
                  assert (seen_tags.count(mt1.first) == 0);
                  seen_tags.insert(mt1.first);

                  // Find matching map_item in kp2
                  bool found_tag = false;
                  for (list<map_item>::iterator kt = kp2->map_items.begin();
                       kt != kp2->map_items.end(); kt++)
                    if (mt1.first == kt->first)
                      {
                        // XXX check that tag appears only once
                        assert (!found_tag);
                        mt2 = *kt;
                        found_tag = true;
                      }

                  if (!found_tag) // if no matching tag, can't use this state
                    goto next_state;
                  if (shift_map.count(mt1) != 0
                      && shift_map[mt1] != mt2) // if contradiction
                    goto next_state;
                  if (shift_back.count(mt2) != 0
                      && shift_back[mt2] != mt1) // if contradiction
                    goto next_state;

                  shift_map[mt1] = mt2;
                  shift_back[mt2] = mt1;
                }

              // XXX check that every tag in kp2 appears in seen_tag
              for (list<map_item>::iterator jt = kp2->map_items.begin();
                   jt != kp2->map_items.end(); jt++)
                {
                  int t2 = jt->first;
                  if (seen_tags.count(t2) == 0)
                    goto next_state;
                }
            }

// #ifdef STAPREGEX_DEBUG_TNFA
//           cerr << " -*- PRE CYCLE CHECK DEBUG obtained valid reorder ";
//           for (map<map_item, map_item>::iterator it = shift_map.begin();
//                it != shift_map.end(); it++)
//             if (it->first != it->second)
//               cerr << it->first << "=>" << it->second << " ";
//           cerr << "to existing state " << t->label << endl;
// #endif

#if 1
          // Check for cyclical dependencies in the resulting reorder.
          // XXX: If we find a cycle, just create a new state. We could
          // also break the cycle with a temporary variable.
          set<map_item> cycle_okay; cycle_okay.clear();
          set<map_item> cycle_seen; cycle_seen.clear();
          for (map<map_item, map_item>::iterator it = shift_map.begin();
               it != shift_map.end(); it++)
            {
              map_item m = it->first;
              if (cycle_okay.count(m) != 0)
                continue; // -- already checked for cycle

              while (shift_map.count(m) != 0 && shift_map[m] != m)
                {
                  if (cycle_okay.count(shift_map[m]) != 0)
                    break; // -- found not-cycle
                  if (cycle_seen.count(shift_map[m]) != 0)
                    goto next_state; // -- found cycle
                  cycle_seen.insert(m);
                  m = shift_map[m];
                }

              // If we reach the end of the chain, or find a map item
              // where shift_map[m] == m, this is not considered a
              // cycle, and therefore none of the map items leading to
              // here are in cycles:
              cycle_okay.insert(m);
              for (set<map_item>::iterator jt = cycle_seen.begin();
                   jt != cycle_seen.end(); jt++)
                  cycle_okay.insert(*jt);
              cycle_seen.clear();
            }
#endif

#ifdef STAPREGEX_DEBUG_TNFA
          cerr << " -*- obtained valid reorder ";
          for (map<map_item, map_item>::iterator it = shift_map.begin();
               it != shift_map.end(); it++)
            if (it->first != it->second)
              cerr << it->first << "=>" << it->second << " ";
          cerr << "to existing state " << t->label << endl;
#endif

          // Generate reordering command based on the contents of shift_map:
          tdfa_action r;
          set<map_item> saved; saved.clear(); // <- elts safe to overwite
          queue<map_item> to_shift;
          for (map<map_item, map_item>::iterator it = shift_back.begin();
               it != shift_back.end(); it++)
            if (it->first != it->second) // skip trivial shifts
              to_shift.push(it->first);
          while (!to_shift.empty())
            {
              map_item elt = to_shift.front(); to_shift.pop();
              if (shift_map.count(elt) != 0 && saved.count(elt) == 0)
                {
                  // Need to save it first -- put back on queue:
                  to_shift.push(elt);
                  continue;
                }

              tdfa_insn insn;
              insn.to = elt;
              insn.from = shift_back[elt];
              insn.save_tag = false;
              insn.save_pos = false;
              r.push_back(insn);

              // shift_back[elt] is now safe to overwrite
              saved.insert(shift_back[elt]);
            }

          answer = t;
          action.insert(action.end(), r.begin(), r.end()); // XXX append
          goto cleanup;
        }
    next_state:
      ;
    }

 cleanup:
  for (state_kernel::iterator it = s->kernel->begin();
       it != s->kernel->end(); it++)
    unmark(it->i);

  return answer;
}

/* Generate position-save commands for any map items in new_k that do
   not appear in old_k (old_k can be NULL). */
tdfa_action
dfa::compute_action (state_kernel *old_k, state_kernel *new_k)
{
  tdfa_action c;

  set<map_item> old_items;
  if (old_k != NULL)
    for (state_kernel::const_iterator it = old_k->begin();
         it != old_k->end(); it++)
      for (list<map_item>::const_iterator jt = it->map_items.begin();
           jt != it->map_items.end(); jt++)
        old_items.insert(*jt);

  // XXX: use a set, since we only need one position-save per new map item
  set<map_item> store_items;
  for (state_kernel::const_iterator it = new_k->begin();
       it != new_k->end(); it++)
    for (list<map_item>::const_iterator jt = it->map_items.begin();
         jt != it->map_items.end(); jt++)
      if (old_items.find(*jt) == old_items.end())
        store_items.insert(*jt);

  for (set<map_item>::iterator it = store_items.begin();
       it != store_items.end(); it++)
    {
      // ensure room for m[i,n] is present in tag_states:
      add_map_item(*it);

      // append m[i,n] <- <curr position> to c
      tdfa_insn insn;
      insn.to = *it;
      insn.save_tag = false;
      insn.save_pos = true;
      c.push_back(insn);
    }

  return c;
}

tdfa_action
dfa::compute_finalizer (state *s)
{
  // TODO VERIFY THAT THIS WORKS -- CAN THERE BE CONFLICTS?
  tdfa_action c;
  assert (s->accept_kp != NULL);

  // iterate map items m[i,j]
  for (list<map_item>::iterator it = s->accept_kp->map_items.begin();
       it != s->accept_kp->map_items.end(); it++)
    {
      // append t[i] <- m[i,j] to c
      tdfa_insn insn;
      insn.from = *it;
      insn.save_tag = true;
      insn.save_pos = false;
      c.push_back(insn);
    }

  return c;
}

/* The main DFA-construction algorithm: */

dfa::dfa (ins *i, int ntags, vector<string>& outcome_snippets,
          int accept_outcome)
  : orig_nfa(i), nstates(0), nmapitems(0), ntags(ntags),
    outcome_snippets(outcome_snippets), success_outcome(accept_outcome)
{
#ifdef STAPREGEX_DEBUG_TNFA
  cerr << "DFA CONSTRUCTION (ntags=" << ntags << "):" << endl;
#endif

  // XXX: Longest-match priority requires one success and one failure outcome:
  if (ntags > 0)
    {
      assert(outcome_snippets.size() == 2);
      assert(success_outcome == 1);
      fail_outcome = 0;
    }

  /* Initialize empty linked list of states: */
  first = last = NULL;

  ins *start = &i[0];
  state_kernel *seed_kernel = make_kernel(start);
  state_kernel *initial_kernel = te_closure(this, seed_kernel, ntags, true);
  delete seed_kernel;
  state *initial = add_state(new state(this, initial_kernel));
  queue<state *> worklist; worklist.push(initial);

  initializer = compute_action(NULL, initial_kernel);
#ifdef STAPREGEX_DEBUG_TNFA
  cerr << " - constructed initializer " << initializer << endl << endl;
#endif

  while (!worklist.empty())
    {
      state *curr = worklist.front(); worklist.pop();

      // Kernel points before and after each edge:
      vector<list<kernel_point> > edge_begin(NUM_REAL_CHARS);
      vector<list<kernel_point> > edge_end(NUM_REAL_CHARS);

      /* Using the CHAR instructions in kernel, build the initial
         table of spans for curr. Also check for final states. */

      for (list<kernel_point>::iterator it = curr->kernel->begin();
           it != curr->kernel->end(); it++)
        {
          if (it->i->i.tag == CHAR)
            {
              // Add a new kernel_point for each targeted insn:
              for (ins *j = &it->i[1]; j < (ins *) it->i->i.link; j++)
                {
                  // XXX: deallocate together with span table
                  kernel_point point;
                  point.i = (ins *) it->i->i.link;
                  point.priority = it->priority;
                  point.map_items = it->map_items; // copy map items

                  edge_begin[j->c.value].push_back(*it);
                  edge_end[j->c.value].push_back(point);
                }
            }
          else if (it->i->i.tag == ACCEPT)
            {
              /* In case of multiple accepting NFA states,
                 prefer the highest numbered outcome.

                 XXX: A possible refinement (commented-out).
                 In case of NFA states with identical outcomes
                 pick the one with the highest arc_priority. */
              if (!curr->accepts || it->i->i.param > curr->accept_outcome
                  /* || arc_compare(it->priority, curr->accept_kp->priority) > 0 */)
                {
                  curr->accept_kp = &*it;
                  curr->accept_outcome = it->i->i.param;
                }
              curr->accepts = true;
            }
        }

      /* If the state was marked as accepting, add a finalizer: */
      if (curr->accepts)
        {
          assert(curr->finalizer.empty()); // XXX: only process a state once
          curr->finalizer = compute_finalizer(curr);
        }

      for (unsigned c = 0; c < NUM_REAL_CHARS; )
        {
          list<kernel_point> eb = edge_begin[c];
          list<kernel_point> ee = edge_end[c];
          assert (!ee.empty()); // XXX: ensured by fail_re in stapregex_compile

          span s;

          s.lb = c;

          while (++c < NUM_REAL_CHARS && same_ins(edge_end[c], ee)) ;

          s.ub = c - 1;

          s.reach_pairs = new state_kernel;
          s.jump_pairs = new state_kernel;

          for (list<kernel_point>::iterator it = eb.begin();
               it != eb.end(); it++)
            s.jump_pairs->push_back(*it);
          for (list<kernel_point>::iterator it = ee.begin();
               it != ee.end(); it++)
            s.reach_pairs->push_back(*it);

          curr->spans.push_back(s);
        }

      /* For each of the spans in curr, determine the reachable
         points assuming a character in the span. */
#ifdef STAPREGEX_DEBUG_TNFA
      cerr << "building transitions for state " << curr->label << ":" << endl;
#endif
      for (list<span>::iterator it = curr->spans.begin();
           it != curr->spans.end(); it++)
        {
          /* Set up candidate target state: */
          state_kernel *u_pairs = te_closure(this, it->reach_pairs, ntags);
          state *target = new state(this, u_pairs);

          /* Generate position-save commands for any map items
             that do not appear in the edge: */
          tdfa_action c = compute_action(it->jump_pairs, u_pairs);

          /* If there is a state t_prime in states such that some
             sequence of reordering commands r produces t_prime
             from target, use t_prime as the target state,
             appending the reordering commands to c. */
          state *t_prime = find_equivalent(target, c);
          if (t_prime != NULL)
            {
              assert (t_prime != target);
              delete target;
            }
          else
            {
              /* We need to actually add target to the dfa: */
              t_prime = target;
              add_state(t_prime);
              worklist.push(t_prime);
#ifdef STAPREGEX_DEBUG_TNFA
              cerr << " -*- add new state " << t_prime->label << endl;
#endif
            }

          /* Set the transition: */
          it->to = t_prime;
          it->action = c;
        }
#ifdef STAPREGEX_DEBUG_TNFA
      cerr << " -> constructed " << curr << endl;
#endif
    }
#ifdef STAPREGEX_DEBUG_TNFA
      cerr << endl;
#endif
}

dfa::~dfa ()
{
  state * s;
  while ((s = first))
    {
      first = s->next;
      delete s;
    }

  delete orig_nfa;
}

// ------------------------------------------------------------------------

void
span::emit_jump (translator_output *o, const dfa *d) const
{
#ifdef STAPREGEX_DEBUG_MATCH
  o->newline () << "_stp_printf(\" --> @%ld GOTO yystate%d\\n\", "
                << "YYLENGTH, " << to->label << ");";
  o->newline () << "_stp_print_flush();";
#endif

  if (to->accepts)
    {
      emit_final(o, d, false /*saw_nul*/);
      return;
    }

  // We record map_items *after* consuming YYCURSOR:
  o->newline () << "YYCURSOR++;";
  d->emit_action(o, action);
  o->newline () << "goto yystate" << to->label << ";";
}

/* Assuming the target DFA state of the span is a final state, emit code to
   cleanup tags and (if appropriate) exit with a final answer. */
void
span::emit_final (translator_output *o, const dfa *d, bool saw_nul) const
{
  assert (to->accepts); // XXX: must guarantee correct usage of emit_final()

  // We record map_items *after* consuming YYCURSOR:
  o->newline () << "YYCURSOR++;";
  d->emit_action(o, action);

  // XXX: Note that condition to->finalizer.empty() is only
  // appropriate for the two-outcome scheme with one outcome being a
  // failure.
  if (d->ntags == 0 || to->finalizer.empty()) // terminate immediately
    {
      d->emit_action(o, to->finalizer);
      if (d->ntags == 0)
        {
          o->newline() << d->outcome_snippets[to->accept_outcome];
          o->newline() << "goto yyfinish;";
        }
      else
        {
          // Need to return the outcome associated with the longest match:
          o->newline() << "if ( YYFINAL(0) >= 0 ) {";
          o->newline(1) << d->outcome_snippets[d->success_outcome];
          o->newline(-1) << "} else {";
          o->newline(1) << d->outcome_snippets[d->fail_outcome];
          o->newline(-1) << "}";
          o->newline() << "goto yyfinish;";
        }
    }
  else
    {
      // Ensure longest-match priority by comparing length + start coord:
      map_item new_tag_0; bool found = false;
      for (tdfa_action::iterator it = to->finalizer.begin();
           it != to->finalizer.end(); it++)
        // TODOXXX: Only works if finalizer only contains reordering commands
        // (perhaps make that into an explicitly checked condition?)
        if (it->save_tag && it->from.first == 0)
          {
            new_tag_0 = it->from; // the map_item saved to tag 0
            found = true;
          }
      assert(found);
#define NEW_TAG_0 "YYTAG(" << new_tag_0.first << "," << new_tag_0.second << ")"
      // if (new_tag_0 == old_tag_0 && new_length > old_length) emit action;
      o->newline() << "if ( YYFINAL(0) < 0 || "
                   << "(" << NEW_TAG_0 << " == YYFINAL(0) &&";
      o->newline() << "    (YYLENGTH - " << NEW_TAG_0 << ")"
                   << " > (YYFINAL(1) - YYFINAL(0)))) {";
      o->newline(1); d->emit_action(o, to->finalizer);
      o->indent(-1);
      o->newline() << "}";

      if (saw_nul)
        o->newline () << "YYCURSOR--;"; /* PR30395: the next state should encounter a repeated NUL */
      o->newline () << "goto yystate" << to->label << ";";
    }
}

string c_char(rchar c)
{
  stringstream o;
  o << "'";
  print_escaped(o, c);
  o << "'";
  return o.str();
}

void
state::emit (translator_output *o, const dfa *d) const
{
  o->newline() << "yystate" << label << ": ";
#ifdef STAPREGEX_DEBUG_MATCH
  o->newline () << "_stp_printf(\"@%ld READ '%s' %c\", "
                << "YYLENGTH, cur, *YYCURSOR);";
  o->newline () << "_stp_print_flush();";
#endif
  o->newline() << "switch (*YYCURSOR) {";
  o->indent(1);
  const span *default_span = NULL;
  for (list<span>::const_iterator it = spans.begin();
       it != spans.end(); it++)
    {
      // If we see a '\0', go immediately into an accept state:
      if (it->lb == '\0')
        {
          o->newline() << "case " << c_char('\0') << ":";
          it->emit_final(o, d, true /* saw_nul */);
        }

      // Emit labels to handle all the other elements of the span:
      bool has_element = false;
      for (unsigned c = max((rchar) '\1', it->lb);
           c <= (unsigned) it->ub; c++) {
        if (c > 127)
          {
            default_span = &(*it);
            continue; // XXX: not an ASCII char, needs special handling
          }
        o->newline() << "case " << c_char((rchar) c) << ":";
        has_element = true;
      }
      if (has_element) /* avoid duplicate action on a span of only '\0' */
          it->emit_jump(o, d);

      // TODOXXX 'default' option should handle the largest span
      // TODOXXX optimize by accepting before end of string whenever possible
    }
  if (default_span)
    {
      // Handle a non-ASCII (unknown) char:
      o->newline() << "default:";
      default_span->emit_jump(o, d);
    }
  o->newline(-1) << "}";
}

void
dfa::emit (translator_output *o) const
{
#ifdef STAPREGEX_DEBUG_DFA
  print(o);
#else
  o->newline() << "{";
  o->newline(1);

  // Initialize tags:
  if (ntags > 0)
    {
      o->newline() << "unsigned int i;";
      o->newline() << "for (i = 0; i < STAPREGEX_MAX_TAG; i++)";
      o->newline(1) << "YYFINAL(i) = -1;";
      o->indent(-1);
    }

  emit_action(o, initializer);

  if (first->accepts)
    {
      emit_action(o, first->finalizer);
    }
  if (first->accepts && ntags == 0) // XXX workaround for empty regex
    {
      o->newline() << outcome_snippets[first->accept_outcome];
      o->newline() << "goto yyfinish;";      
    }

  for (state *s = first; s; s = s->next)
    s->emit(o, this);

  o->newline() << "yyfinish: ;";
  o->newline(-1) << "}";
#endif
}

void
dfa::emit_action (translator_output *o, const tdfa_action &act) const
{
#ifdef STAPREGEX_DEBUG_MATCH
  o->newline () << "_stp_printf(\" --> @%ld, SET_TAG %s\\n\", "
                << "YYLENGTH, \"" << act << "\");";
  o->newline () << "_stp_print_flush();";
#endif
  for (tdfa_action::const_iterator it = act.begin(); it != act.end(); it++)
    {
      if (it->save_tag)
        o->newline() << "YYFINAL(" << it->from.first << ") = ";
      else
        o->newline() << "YYTAG(" << it->to.first
                     << "," << it->to.second << ") = ";
      if (it->save_pos)
        o->line() << "YYLENGTH";
      else
        o->line() << "YYTAG(" << it->from.first
                  << "," << it->from.second << ")";
      o->line() << ";";
    }
}

void
dfa::emit_tagsave (translator_output *o, std::string,
                   std::string, std::string num_final_tags) const
{
  // TODOXXX: ignoring other two snippets (tag_states and tag_vals),
  // which are handled by the earlier code in the actual matcher.
  o->newline() << num_final_tags << " = " << ntags << ";";
}

// ------------------------------------------------------------------------

std::ostream&
operator << (std::ostream &o, const map_item& m)
{
  o << "m[" << m.first << "," << m.second << "]";
  return o;
}

std::ostream&
operator << (std::ostream &o, const tdfa_action& a)
{
  for (list<tdfa_insn>::const_iterator it = a.begin();
       it != a.end(); it++)
    {
      if (it != a.begin()) o << "; ";

      if (it->save_tag)
        o << "t[" << it->from.first << "] <- ";
      else
        o << it->to << " <- ";

      if (it->save_pos)
        o << "p";
      else
        o << it->from;
    }

  return o;
}

std::ostream&
operator << (std::ostream &o, const arc_priority& p)
{
  o << p.first << "/" << (1 << p.second);
  return o;
}

void
kernel_point::print (std::ostream &o, ins *base) const
{
  o << (i - base);
  o << "[" << priority << "]";
  if (!map_items.empty())
    {
      o << ":";
      for (list<map_item>::const_iterator it = map_items.begin();
           it != map_items.end(); it++)
        {
          if (it != map_items.begin()) o << ",";
          o << *it;
        }
    }
}

void
state::print (translator_output *o) const
{
  o->line() << "state " << label;

#ifdef STAPREGEX_DEBUG_TNFA
  // For debugging, also show the kernel:
  ins *base = owner->orig_nfa;
  o->line() << " w/kernel {";
  for (state_kernel::iterator it = kernel->begin();
       it != kernel->end(); it++)
    {
      if (it != kernel->begin()) o->line() << "; ";
      it->print(o->line(), base);
    }
  o->line() << "}";

  // Also print information for constructing reorderings:
  set<map_item> all_items;
  for (state_kernel::iterator it = kernel->begin();
       it != kernel->end(); it++)
    for (list<map_item>::iterator jt = it->map_items.begin();
         jt != it->map_items.end(); jt++)
      all_items.insert(*jt);
  if (!all_items.empty())
    {
      o->newline() << "  ";
      o->line() << " with map_items ";
      for (set<map_item>::iterator it = all_items.begin();
           it != all_items.end(); it++)
        o->line() << *it << " ";
    }

  if (accepts || !finalizer.empty())
    o->newline() << "  ";
#endif

  if (accepts)
    o->line() << " accepts " << accept_outcome;
  if (!finalizer.empty())
    o->line() << " with finalizer {" << finalizer << "}";

  // TODOXXX: factor this out to span::print()
  o->indent(1);
  for (list<span>::const_iterator it = spans.begin();
       it != spans.end(); it++)
    {
      o->newline() << "'";
      if (it->lb == it->ub)
        {
          print_escaped (o->line(), it->lb);
          o->line() << "  ";
        }
      else
        {
          print_escaped (o->line(), it->lb);
          o->line() << "-";
          print_escaped (o->line(), it->ub);
        }

      if (it->to != NULL)
        o->line() << "' -> " << it->to->label;
      else
        o->line() << "' -> <none>";

      if (!it->action.empty())
        o->line() << " {" << it->action << "}";
    }
  o->newline(-1);
}

void
state::print (std::ostream &o) const
{
  translator_output to(o); print(&to);
}

std::ostream&
operator << (std::ostream &o, const state *s)
{
  s->print(o);
  return o;
}

void
dfa::print (translator_output *o) const
{
  o->newline();
  for (state *s = first; s; s = s->next)
    {
      s->print(o);
      o->newline();
    }
  o->newline();
}

void
dfa::print (std::ostream& o) const
{
  translator_output to(o); print(&to);
}

std::ostream&
operator << (std::ostream& o, const dfa& d)
{
  d.print(o);
  return o;
}

std::ostream&
operator << (std::ostream &o, const dfa *d)
{
  o << *d;
  return o;
}

};

/* vim: set sw=2 ts=8 cino=>4,n-2,{2,^-2,t0,(0,u0,w1,M1 : */