File: stapregex-tree.h

package info (click to toggle)
systemtap 5.1-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 47,964 kB
  • sloc: cpp: 80,838; ansic: 54,757; xml: 49,725; exp: 43,665; sh: 11,527; python: 5,003; perl: 2,252; tcl: 1,312; makefile: 1,006; javascript: 149; lisp: 105; awk: 101; asm: 91; java: 70; sed: 16
file content (283 lines) | stat: -rw-r--r-- 9,066 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
// -*- C++ -*-
// Copyright (C) 2012-2013 Red Hat Inc.
//
// This file is part of systemtap, and is free software.  You can
// redistribute it and/or modify it under the terms of the GNU General
// Public License (GPL); either version 2, or (at your option) any
// later version.
//
// ---
//
// This file incorporates code from the re2c project; please see
// the file README.stapregex for details.

#ifndef STAPREGEX_TREE_H
#define STAPREGEX_TREE_H

#include <string>
#include <deque>
#include <utility>
#include <stdexcept>

#include "stapregex-defines.h"

// Numbering scheme for tags representing start and end of n'th subexpression:
#define TAG_START(n) (2*(n))
#define TAG_END(n) (2*(n)+1)

namespace stapregex {

typedef std::pair<rchar, rchar> segment;

struct range {
  std::deque<segment> segments;   // -- [lb, ub], XXX sorted ascending

  range () {}                     // -- empty range
  range (rchar lb, rchar ub);     // -- a segment [lb, ub]
  range (const std::string& str); // -- character class (no named entities)

  void print(std::ostream& o) const;
};

std::ostream& operator<< (std::ostream&, const range&);
std::ostream& operator<< (std::ostream&, const range*);

// NB: be sure to deallocate the old ranges if they are no longer used
range *range_union(range *a, range *b);
range *range_invert(range *ran);

// ------------------------------------------------------------------------

/* For the NFA representation, re2c uses an assembler-like notation,
   which should be easy enough to understand based on the meaning of
   FORK. An NFA is considered to be a tagged-NFA if it uses the TAG opcode.

   The only tricky thing here is instituting sensible defaults for
   tagged-NFA transition priorities. This is done by setting i->param = 0 
   on a FORK instruction if the FORK-target has lower priority, and
   i->param = 1 if it has higher priority. FORK is the only place
   where discriminating between transitions needs to be done. */

/* Opcodes for the assembly notation: */
const unsigned CHAR = 0;   // -- match character set (one successful outcome)
const unsigned GOTO = 1;
const unsigned FORK = 2;   // -- nondeterministic choice; param marks priority
const unsigned ACCEPT = 3; // -- final states; param marks success/fail
const unsigned TAG = 4;    // -- subexpression tracking; param marks tag #
const unsigned INIT = 5;   // -- opcode for ^ operator

/* To represent an NFA, allocate a continuous array of these ins units: */
union ins {
  struct {
    unsigned int tag:3;    // -- opcode
    unsigned int marked:1; // -- internal use; for algorithmic manipulation
    unsigned int param:8;  // -- numerical operand, e.g. tag #
    void *link;            // -- other instruction, e.g. FORK/GOTO target 
  } i;

  /* For the CHAR opcodes, we follow the instruction with a sequence of
     these special character-matching units, in ascending order: */
  struct {
    rchar value;           // -- character to match
    unsigned short bump;   // -- relative address of success-outcome insn
  } c;
};

inline bool marked(ins *i) { return i->i.marked != 0; }
inline void mark(ins *i) { i->i.marked = 1; }
inline void unmark(ins *i) { i->i.marked = 0; }

/* Helper function for printing out one ins element in a sequence: */
const ins* show_ins(std::ostream &o, const ins *i, const ins *base);

/* Perform the obvious optimization/compression on an ins node
   (namely, collapsing chained GOTOs).

   NB: This function sets 'marked' flags on the node; the caller is
   responsible for clearing these flags for subsequent use. */
void ins_optimize(ins *i);

// ------------------------------------------------------------------------

struct regexp {
  int num_tags; // -- number of tag_op id's used in expression, -1 if unknown
  int size;     // -- number of instructions required for ins representation

  regexp () : num_tags(-1), size(-1) {}
  virtual ~regexp () {}

  virtual const std::string type_of() const = 0;

  /* Is regexp left-anchored? This function is used for optimization
     purposes, so it's always safe to return false. */
  virtual bool anchored() const { return false; }

  /* Length of array needed for ins array representation: */
  virtual void calc_size() = 0;
  unsigned ins_size() { if (size < 0) calc_size(); return size; }
  
  /* Compile to (part of) an already-allocated ins array: */
  virtual void compile(ins *i) = 0;

  /* Allocate a fresh ins array and compile: */
  ins *compile();

  /* Print out, with a careful eye as to bracketing:
       priority == 0 -- don't bracket anything
       priority == 1 -- bracket alt_op, but not cat_op
       priority == 2 -- bracket all compound operators */
  virtual void print(std::ostream& o, unsigned priority = 0) const = 0;
};

std::ostream& operator << (std::ostream &o, const regexp& re);
std::ostream& operator << (std::ostream &o, const regexp* re);

// ------------------------------------------------------------------------

struct null_op : public regexp {
  const std::string type_of() const { return "null_op"; }
  void calc_size();
  void compile(ins *i);

  void print (std::ostream &o, unsigned) const {
    o << "{null}"; // XXX: pick a better pseudo-notation?
  }
};

struct anchor_op : public regexp {
  rchar type;
  anchor_op (rchar type);
  const std::string type_of() const { return "anchor_op"; }
  bool anchored () const { return type == '^'; }
  void calc_size();
  void compile(ins *i);

  void print (std::ostream &o, unsigned) const {
    o << type;
  }  
};

struct tag_op : public regexp {
  unsigned id;
  tag_op (unsigned id);
  const std::string type_of() const { return "tag_op"; }
  void calc_size();
  void compile(ins *i);

  void print (std::ostream &o, unsigned) const {
    o << "{t_" << id << "}";
  }
};

struct match_op : public regexp {
  range *ran;
  match_op (range *ran);
  const std::string type_of() const { return "match_op"; }
  void calc_size();
  void compile(ins *i);
  void print (std::ostream &o, unsigned) const { o << ran; }
};

struct alt_op : public regexp {
  regexp *a, *b;
  bool prefer_second;
  alt_op (regexp *a, regexp *b, bool prefer_second = false);
  const std::string type_of() const { return "alt_op"; }
  bool anchored () const { return a->anchored() && b->anchored(); }
  void calc_size();
  void compile(ins *i);

  void print (std::ostream &o, unsigned priority) const {
    if (priority >= 1) o << "(";
    a->print(o, 0); o << "|"; b->print(o, 0);
    if (priority >= 1) o << ")";
  }
};

struct cat_op : public regexp {
  regexp *a, *b;
  cat_op (regexp *a, regexp *b);
  const std::string type_of() const { return "cat_op"; }
  bool anchored () const {
    return a->anchored(); // XXX: doesn't catch all cases, but that's all right
  }
  void calc_size();
  void compile(ins *i);

  void print (std::ostream &o, unsigned priority) const {
    if (priority >= 2) o << "(";
    a->print(o, 1); b->print(o, 1);
    if (priority >= 2) o << ")";
  }
};

struct close_op : public regexp {
  regexp *re;
  bool prefer_shorter;
  close_op (regexp *re, bool prefer_shorter = false);
  const std::string type_of() const { return "close_op"; }
  bool anchored () const { return re->anchored(); }
  void calc_size();
  void compile(ins *i);

  void print (std::ostream &o, unsigned) const {
    re->print(o, 2); o << "+";
  }
};

struct closev_op : public regexp {
  regexp *re;
  int nmin, nmax; // -- use -1 to denote unboundedness in that direction
  closev_op (regexp *re, int nmin, int nmax);
  const std::string type_of() const { return "closev_op"; }
  bool anchored () const { return nmin > 0 && re->anchored(); }
  void calc_size();
  void compile(ins *i);

  void print (std::ostream &o, unsigned) const {
    re->print(o, 2); o << "{" << nmin << "," << nmax << "}";
  }
};

/* The following is somewhat generalized to allow implementing support
   for multiple distinct success outcomes, like in the original re2c: */
struct rule_op : public regexp {
  regexp *re;
  unsigned outcome; // -- 0 -> failure; 1 -> success; prefer success outcomes
  rule_op (regexp *re, unsigned outcome);
  const std::string type_of() const { return "rule_op"; }
  bool anchored () const { return re->anchored(); }
  void calc_size();
  void compile(ins *i);

  void print (std::ostream &o, unsigned) const {
    re->print(o, 1);
    if (outcome) o << "{success_" << outcome << "}";
    else o << "{failure_0}";
  }
};

// ------------------------------------------------------------------------

regexp *str_to_re(const std::string& str);

regexp *make_alt(regexp* a, regexp* b);
regexp *make_dot(bool allow_zero = false);

// ------------------------------------------------------------------------

struct regex_error: public std::runtime_error
{
  int pos; // -1 denotes error at unknown/indeterminate position
  regex_error (const std::string& msg):
    runtime_error(msg), pos(-1) {}
  regex_error (const std::string& msg, int pos):
    runtime_error(msg), pos(pos) {}
  ~regex_error () throw () {}
};

};

#endif

/* vim: set sw=2 ts=8 cino=>4,n-2,{2,^-2,t0,(0,u0,w1,M1 : */