File: translate.cxx

package info (click to toggle)
systemtap 5.1-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 47,964 kB
  • sloc: cpp: 80,838; ansic: 54,757; xml: 49,725; exp: 43,665; sh: 11,527; python: 5,003; perl: 2,252; tcl: 1,312; makefile: 1,006; javascript: 149; lisp: 105; awk: 101; asm: 91; java: 70; sed: 16
file content (8860 lines) | stat: -rw-r--r-- 288,064 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
// translation pass
// Copyright (C) 2005-2019 Red Hat Inc.
// Copyright (C) 2005-2008 Intel Corporation.
// Copyright (C) 2010 Novell Corporation.
//
// This file is part of systemtap, and is free software.  You can
// redistribute it and/or modify it under the terms of the GNU General
// Public License (GPL); either version 2, or (at your option) any
// later version.

#include "config.h"
#include "staptree.h"
#include "elaborate.h"
#include "translate.h"
#include "session.h"
#include "tapsets.h"
#include "util.h"
#include "dwarf_wrappers.h"
#include "setupdwfl.h"
#include "task_finder.h"
#include "runtime/k_syms.h"
#include "dwflpp.h"
#include "stapregex.h"
#include "stringtable.h"

#include <byteswap.h>
#include <cstdlib>
#include <iostream>
#include <set>
#include <sstream>
#include <string>
#include <cassert>
#include <cstring>
#include <cerrno>

extern "C" {
#include <dwarf.h>
#include <elfutils/libdwfl.h>
#include <elfutils/libdw.h>
#include <ftw.h>
#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#include <unistd.h>
}

// Max unwind table size (debug or eh) per module. Somewhat arbitrary
// limit (a bit more than twice the .debug_frame size of my local
// vmlinux for 2.6.31.4-83.fc12.x86_64).
// A larger value was recently found in a libxul.so build.
// ... and yet again in libxul.so, PR15162
// ... and yet again w.r.t. oracle db in private communication, 25289196
#define MAX_UNWIND_TABLE_SIZE (32 * 1024 * 1024)

#define STAP_T_01 _("\"Array overflow, check ")
#define STAP_T_02 _("\"MAXNESTING exceeded\";")
#define STAP_T_03 _("\"division by 0\";")
#define STAP_T_04 _("\"MAXACTION exceeded\";")
#define STAP_T_05 _("\"aggregation overflow in ")
#define STAP_T_06 _("\"empty aggregate\";")
#define STAP_T_07 _("\"histogram index out of range\";")

using namespace std;

class var;
struct tmpvar;
struct aggvar;
struct mapvar;
class itervar;

// A null-sink output stream, similar to /dev/null
// (no buffer -> badbit -> quietly suppressed output)
static ostream nullstream(NULL);
static translator_output null_o(nullstream);

struct c_unparser: public unparser, public visitor
{
  systemtap_session* session;
  translator_output* o;

  derived_probe* current_probe;
  functiondecl* current_function;

  const functioncall* assigned_functioncall;
  const string* assigned_functioncall_retval;

  unsigned tmpvar_counter;
  unsigned label_counter;
  unsigned action_counter;
  unsigned fc_counter;
  bool already_checked_action_count;

  varuse_collecting_visitor vcv_needs_global_locks; // tracks union of all probe handler body reads/writes

  map<string, probe*> probe_contents;

  // with respect to current_probe:
  set<statement*> pushdown_lock; // emit_lock() required before/inside these statements
  set<statement*> pushdown_unlock; // emit_unlock() required inside/after these statements
  inline bool pushdown_lock_p(statement* s) {
    if (this->session->verbose > 3)
      clog << "pushdown_lock for " << *s->tok << " "
           << ((pushdown_lock.find(s) != pushdown_lock.end()) ? "" : "not ")
           << "needed"
           << endl;
    return pushdown_lock.find(s) != pushdown_lock.end();
  }
  inline bool pushdown_unlock_p(statement* s) {
    if (this->session->verbose > 3)
      clog << "pushdown_unlock for " << *s->tok << " "
           << ((pushdown_unlock.find(s) != pushdown_unlock.end()) ? "" : "not ")
           << "needed"
           << endl;
    return pushdown_unlock.find(s) != pushdown_unlock.end();
  }
  
  // PR26296
  //
  // The trivial implementation is: every statement-visitor in the sets
  // emits a lock-at-beginning and/or unlock-at-end; never update the sets,
  // so only the outermost probe-handler body statement object does this.
  //
  // But it's better to push operations inward if possible, toward
  // smaller/nested statements, if the lock lifetimes can be safely
  // shortened.  How this is done safely/ideally depends on the
  // statement type, so see those visitors.

  map<pair<bool, string>, string> compiled_printfs;

  c_unparser (systemtap_session* ss, translator_output* op=NULL):
    session (ss), o (op ?: ss->op), current_probe(0), current_function (0),
    assigned_functioncall (0), assigned_functioncall_retval (0),
    tmpvar_counter (0), label_counter (0), action_counter(0), fc_counter(0),
    already_checked_action_count(false), vcv_needs_global_locks (*ss) {}
  ~c_unparser () {}

  // The main c_unparser doesn't write declarations as it traverses,
  // but the c_tmpcounter subclass will.
  virtual void var_declare(string const&, var const&) {}

  // If we've seen a dupe, return it; else remember this and return NULL.
  probe *get_probe_dupe (derived_probe *dp);

  void emit_map_type_instantiations ();
  void emit_common_header ();
  void emit_global (vardecl* v);
  void emit_global_init (vardecl* v);
  void emit_global_init_type (vardecl *v);
  void emit_global_param (vardecl* v);
  void emit_global_init_setters ();
  void emit_functionsig (functiondecl* v);
  void emit_kernel_module_init ();
  void emit_kernel_module_exit ();
  void emit_module_init ();
  void emit_module_refresh ();
  void emit_module_exit ();
  void emit_function (functiondecl* v);
  void emit_lock_decls (const varuse_collecting_visitor& v);
  void emit_lock ();
  bool locks_needed_p (visitable *s);
  void locks_not_needed_argh (statement *s);
  void emit_unlock ();
  void emit_probe (derived_probe* v);
  void emit_probe_condition_update(derived_probe* v);

  void emit_compiled_printfs ();
  void emit_compiled_printf_locals ();
  void declare_compiled_printf (bool print_to_stream, const string& format);
  virtual const string& get_compiled_printf (bool print_to_stream,
					     const string& format);

  // for use by stats (pmap) foreach
  set<string> aggregations_active;

  // values immediately available in foreach_loop iterations
  map<string, string> foreach_loop_values;
  void visit_foreach_loop_value (foreach_loop* s, const string& value="");
  bool get_foreach_loop_value (arrayindex* ai, string& value);

  // for use by looping constructs
  vector<string> loop_break_labels;
  vector<string> loop_continue_labels;

  string c_typename (exp_type e);
  virtual string c_localname (const string& e, bool mangle_oldstyle = false);
  virtual string c_globalname (const string &e);
  virtual string c_funcname (const string &e);
  virtual string c_funcname (const string &e, bool &funcname_shortened);

  string c_arg_define (const string& e);
  string c_arg_undef (const string& e);

  string map_keytypes(vardecl* v);
  void c_global_write_def(vardecl* v);
  void c_global_read_def(vardecl* v);
  void c_global_write_undef(vardecl* v);
  void c_global_read_undef(vardecl* v);

  void c_assign (var& lvalue, const string& rvalue, const token* tok);
  void c_assign (tmpvar& lvalue, expression* rvalue, const char* msg);
  void c_assign (const string& lvalue, expression* rvalue, const char* msg);
  void c_assign (const string& lvalue, const string& rvalue, exp_type type,
                 const char* msg, const token* tok);

  void c_declare(exp_type ty, const string &ident);
  void c_declare_static(exp_type ty, const string &ident);

  void c_strcat (const string& lvalue, const string& rvalue);
  void c_strcat (const string& lvalue, expression* rvalue);

  void c_strcpy (const string& lvalue, const string& rvalue);
  void c_strcpy (const string& lvalue, expression* rvalue);

  bool is_local (vardecl const* r, token const* tok);

  tmpvar gensym(exp_type ty);
  aggvar gensym_aggregate();

  var getvar(vardecl* v, token const* tok = NULL);
  itervar getiter(symbol* s);
  mapvar getmap(vardecl* v, token const* tok = NULL);

  void load_map_indices(arrayindex* e,
			vector<tmpvar> & idx);

  var* load_aggregate (expression *e, aggvar & agg);
  string histogram_index_check(var & vase, tmpvar & idx) const;

  void collect_map_index_types(vector<vardecl* > const & vars,
			       set< pair<vector<exp_type>, exp_type> > & types);

  void record_actions (unsigned actions, const token* tok, bool update=false);

  void visit_block (block* s);
  void visit_try_block (try_block* s);
  void visit_embeddedcode (embeddedcode* s);
  void visit_null_statement (null_statement* s);
  void visit_expr_statement (expr_statement* s);
  void visit_if_statement (if_statement* s);
  void visit_for_loop (for_loop* s);
  void visit_foreach_loop (foreach_loop* s);
  void visit_return_statement (return_statement* s);
  void visit_delete_statement (delete_statement* s);
  void visit_next_statement (next_statement* s);
  void visit_break_statement (break_statement* s);
  void visit_continue_statement (continue_statement* s);
  void visit_literal_string (literal_string* e);
  void visit_literal_number (literal_number* e);
  void visit_embedded_expr (embedded_expr* e);
  void visit_binary_expression (binary_expression* e);
  void visit_unary_expression (unary_expression* e);
  void visit_pre_crement (pre_crement* e);
  void visit_post_crement (post_crement* e);
  void visit_logical_or_expr (logical_or_expr* e);
  void visit_logical_and_expr (logical_and_expr* e);
  void visit_array_in (array_in* e);
  void visit_regex_query (regex_query* e);
  void visit_compound_expression(compound_expression* e);
  void visit_comparison (comparison* e);
  void visit_concatenation (concatenation* e);
  void visit_ternary_expression (ternary_expression* e);
  void visit_assignment (assignment* e);
  void visit_symbol (symbol* e);
  void visit_target_register (target_register* e);
  void visit_target_deref (target_deref* e);
  void visit_target_bitfield (target_bitfield* e);
  void visit_target_symbol (target_symbol* e);
  void visit_arrayindex (arrayindex* e);
  void visit_functioncall (functioncall* e);
  void visit_print_format (print_format* e);
  void visit_stat_op (stat_op* e);
  void visit_hist_op (hist_op* e);
  void visit_cast_op (cast_op* e);
  void visit_autocast_op (autocast_op* e);
  void visit_atvar_op (atvar_op* e);
  void visit_defined_op (defined_op* e);
  void visit_probewrite_op(probewrite_op* e);
  void visit_entry_op (entry_op* e);
  void visit_perf_op (perf_op* e);

  // start/close statements with multiple independent child visits
  virtual void start_compound_statement (const char*, statement*) { }
  virtual void close_compound_statement (const char*, statement*) { }

  // wrap one child visit of a compound statement
  virtual void wrap_compound_visit (expression *e) { if (e) e->visit (this); }
  virtual void wrap_compound_visit (statement *s) { if (s) s->visit (this); }
};

// A shadow visitor, meant to generate temporary variable declarations
// for function or probe bodies.  The output is discarded, but we now do
// real work in var_declare().
struct c_tmpcounter cxx_final: public c_unparser
{
  c_unparser* parent;
  set<string> declared_vars;

  c_tmpcounter (c_unparser* p):
    c_unparser(p->session, &null_o), parent (p)
  { }

  // When vars are created *and used* (i.e. not overridden tmpvars) they call
  // var_declare(), which will forward to the parent c_unparser for output;
  void var_declare(string const&, var const& v) cxx_override;

  void emit_function (functiondecl* fd) cxx_override;
  void emit_probe (derived_probe* dp) cxx_override;

  const string& get_compiled_printf (bool print_to_stream,
				     const string& format) cxx_override;

  void start_compound_statement (const char*, statement*) cxx_override;
  void close_compound_statement (const char*, statement*) cxx_override;

  void wrap_compound_visit (expression *e) cxx_override;
  void wrap_compound_visit (statement *s) cxx_override;

  void start_struct_def (std::ostream::pos_type &before,
                         std::ostream::pos_type &after, const token* tok);
  void close_struct_def (std::ostream::pos_type before,
                         std::ostream::pos_type after);
};

struct c_unparser_assignment:
  public throwing_visitor
{
  c_unparser* parent;
  interned_string op;
  expression* rvalue;
  bool post; // true == value saved before modify operator
  c_unparser_assignment (c_unparser* p, interned_string o, expression* e):
    throwing_visitor ("invalid lvalue type"),
    parent (p), op (o), rvalue (e), post (false) {}
  c_unparser_assignment (c_unparser* p, interned_string o, bool pp):
    throwing_visitor ("invalid lvalue type"),
    parent (p), op (o), rvalue (0), post (pp) {}

  void prepare_rvalue (interned_string op,
		       tmpvar & rval,
		       token const*  tok);

  void c_assignop(tmpvar & res,
		  var const & lvar,
		  tmpvar const & tmp,
		  token const*  tok);

  // The set of valid lvalues are limited.
  void visit_symbol (symbol* e);
  void visit_target_register (target_register* e);
  void visit_target_deref (target_deref* e);
  void visit_arrayindex (arrayindex* e);
};


ostream & operator<<(ostream & o, var const & v);


/*
  Some clarification on the runtime structures involved in statistics:

  The basic type for collecting statistics in the runtime is struct
  stat_data. This contains the count, min, max, sum, and possibly
  histogram fields.

  There are two places struct stat_data shows up.

  1. If you declare a statistic variable of any sort, you want to make
  a struct _Stat. A struct _Stat* is also called a Stat. Struct _Stat
  contains a per-CPU array of struct stat_data values, as well as a
  struct stat_data which it aggregates into. Writes into a Struct
  _Stat go into the per-CPU struct stat. Reads involve write-locking
  the struct _Stat, aggregating into its aggregate struct stat_data,
  unlocking, read-locking the struct _Stat, then reading values out of
  the aggregate and unlocking.

  2. If you declare a statistic-valued map, you want to make a
  pmap. This is a per-CPU array of maps, each of which holds struct
  stat_data values, as well as an aggregate *map*. Writes into a pmap
  go into the per-CPU map. Reads involve write-locking the pmap,
  aggregating into its aggregate map, unlocking, read-locking the
  pmap, then reading values out of its aggregate (which is a normal
  map) and unlocking.

  Because, at the moment, the runtime does not support the concept of
  a statistic which collects multiple histogram types, we may need to
  instantiate one pmap or struct _Stat for each histogram variation
  the user wants to track.
 */

class var
{

protected:
  // Required for accurate mangling:
  c_unparser *u;

  bool local;
  exp_type ty;
  statistic_decl sd;
  string name;
  bool do_mangle;

private:
  mutable bool declaration_needed;

public:

  var(c_unparser *u, bool local, exp_type ty,
      statistic_decl const & sd, string const & name)
    : u(u), local(local), ty(ty), sd(sd), name(name),
      do_mangle(true), declaration_needed(false)
  {}

  var(c_unparser *u, bool local, exp_type ty, string const & name)
    : u(u), local(local), ty(ty), name(name),
      do_mangle(true), declaration_needed(false)
  {}

  var(c_unparser *u, bool local, exp_type ty,
      string const & name, bool do_mangle)
    : u(u), local(local), ty(ty), name(name),
      do_mangle(do_mangle), declaration_needed(false)
  {}

  var(c_unparser *u, bool local, exp_type ty, unsigned & counter)
    : u(u), local(local), ty(ty), name("__tmp" + lex_cast(counter++)),
      do_mangle(false), declaration_needed(true)
  {}

  virtual ~var() {}

  bool is_local() const
  {
    return local;
  }

  statistic_decl const & sdecl() const
  {
    return sd;
  }

  void assert_hist_compatible(hist_op const & hop)
  {
    // Semantic checks in elaborate should have caught this if it was
    // false. This is just a double-check.
    switch (sd.type)
      {
      case statistic_decl::linear:
	assert(hop.htype == hist_linear);
	assert(hop.params.size() == 3);
	assert(hop.params[0] == sd.linear_low);
	assert(hop.params[1] == sd.linear_high);
	assert(hop.params[2] == sd.linear_step);
	break;
      case statistic_decl::logarithmic:
	assert(hop.htype == hist_log);
	assert(hop.params.size() == 0);
	break;
      case statistic_decl::none:
	assert(false);
      }
  }

  exp_type type() const
  {
    return ty;
  }

  string c_name() const
  {
    if (!do_mangle)
      return name;
    else if (local)
      return u->c_localname(name);
    else
      return u->c_globalname(name);
  }

  string stat_op_tokens() const
  {
    string result = "";
    if (sd.stat_ops & STAT_OP_COUNT)
      result += "STAT_OP_COUNT, ";
    if (sd.stat_ops & STAT_OP_SUM)
      result += "STAT_OP_SUM, ";
    if (sd.stat_ops & STAT_OP_MIN)
      result += "STAT_OP_MIN, ";
    if (sd.stat_ops & STAT_OP_MAX)
      result += "STAT_OP_MAX, ";
    if (sd.stat_ops & STAT_OP_AVG)
      result += "STAT_OP_AVG, ";
    if (sd.stat_ops & STAT_OP_VARIANCE)
      result += "STAT_OP_VARIANCE, " + lex_cast(sd.bit_shift) + ", ";

    return result;
  }

  string value() const
  {
    if (declaration_needed)
      {
	u->var_declare (name, *this);
	declaration_needed = false;
      }

    if (local)
      return "l->" + c_name();
    else
      return "global(" + c_name() + ")";
  }

  virtual string hist() const
  {
    assert (ty == pe_stats);
    assert (sd.type != statistic_decl::none);
    return "(&(" + value() + "->hist))";
  }

  virtual string buckets() const
  {
    assert (ty == pe_stats);
    assert (sd.type != statistic_decl::none);
    return "(" + value() + "->hist.buckets)";
  }

  string init() const
  {
    switch (type())
      {
      case pe_string:
        if (! local)
          return ""; // module_param
        else
          return value() + "[0] = '\\0';";
      case pe_long:
        if (! local)
          return ""; // module_param
        else
          return value() + " = 0;";
      case pe_stats:
        {
          // See also mapvar::init().

          if (local)
            throw SEMANTIC_ERROR(_F("unsupported local stats init for %s", value().c_str()));

          string prefix = "global_set(" + c_name() + ", _stp_stat_init (" + stat_op_tokens();
          // Check for errors during allocation.
          string suffix = "if (" + value () + " == NULL) rc = -ENOMEM;";

          switch (sd.type)
            {
            case statistic_decl::none:
              prefix += string("KEY_HIST_TYPE, HIST_NONE, ");
              break;

            case statistic_decl::linear:
              prefix += string("KEY_HIST_TYPE, HIST_LINEAR, ")
                + lex_cast(sd.linear_low) + ", "
                + lex_cast(sd.linear_high) + ", "
                + lex_cast(sd.linear_step) + ", ";
              break;

            case statistic_decl::logarithmic:
              prefix += string("KEY_HIST_TYPE, HIST_LOG, ");
              break;

            default:
              throw SEMANTIC_ERROR(_F("unsupported stats type for %s", value().c_str()));
            }

	  prefix += "NULL";
          prefix = prefix + ")); ";
          return string (prefix + suffix);
        }

      default:
        throw SEMANTIC_ERROR(_F("unsupported initializer for %s", value().c_str()));
      }
  }

  string fini () const
  {
    switch (type())
      {
      case pe_string:
      case pe_long:
	return ""; // no action required
      case pe_stats:
	return "_stp_stat_del (" + value () + ");";
      default:
        throw SEMANTIC_ERROR(_F("unsupported deallocator for %s", value().c_str()));
      }
  }

  virtual void declare(c_unparser &c) const
  {
    c.c_declare(ty, c_name());
  }
};

ostream & operator<<(ostream & o, var const & v)
{
  return o << v.value();
}

void
c_tmpcounter::var_declare (string const& name, var const& v)
{
  if (declared_vars.insert(name).second)
    v.declare (*parent);
}

struct stmt_expr
{
  c_unparser & c;
  stmt_expr(c_unparser & c) : c(c)
  {
    c.o->newline() << "({";
    c.o->indent(1);
  }
  ~stmt_expr()
  {
    c.o->newline(-1) << "})";
  }
};


struct tmpvar
  : public var
{
protected:
  bool overridden;
  string override_value;

public:
  tmpvar(c_unparser *u, exp_type ty, unsigned & counter)
    : var(u, true, ty, counter),
      overridden(false)
  {}

  tmpvar(const var& source)
    : var(source), overridden(false)
  {}

  void override(const string &value)
  {
    overridden = true;
    override_value = value;
  }

  bool is_overridden()
  {
    return overridden;
  }

  string value() const
  {
    if (overridden)
      return override_value;
    else
      return var::value();
  }
};

ostream & operator<<(ostream & o, tmpvar const & v)
{
  return o << v.value();
}

struct aggvar
  : public var
{
  aggvar(c_unparser *u, unsigned & counter)
    : var(u, true, pe_stats, counter)
  {}

  string init() const
  {
    assert (type() == pe_stats);
    return value() + " = NULL;";
  }

  void declare(c_unparser &c) const cxx_override
  {
    assert (type() == pe_stats);
    c.o->newline() << "struct stat_data *" << name << ";";
  }

  string get_hist (var& index) const
  {
    return "(" + value() + "->histogram[" + index.value() + "])";
  }
};

struct mapvar
  : public var
{
  vector<exp_type> index_types;
  int maxsize;
  bool wrap;
  mapvar (c_unparser *u,
          bool local, exp_type ty,
	  statistic_decl const & sd,
	  string const & name,
	  vector<exp_type> const & index_types,
	  int maxsize, bool wrap)
    : var (u, local, ty, sd, name),
      index_types (index_types),
      maxsize (maxsize), wrap(wrap)
  {}

  static string shortname(exp_type e);
  static string key_typename(exp_type e);
  static string value_typename(exp_type e);

  string keysym () const
  {
    string result;
    vector<exp_type> tmp = index_types;
    tmp.push_back (type ());
    for (unsigned i = 0; i < tmp.size(); ++i)
      {
	switch (tmp[i])
	  {
	  case pe_long:
	    result += 'i';
	    break;
	  case pe_string:
	    result += 's';
	    break;
	  case pe_stats:
	    result += 'x';
	    break;
	  default:
	    throw SEMANTIC_ERROR(_("unknown type of map"));
	    break;
	  }
      }
    return result;
  }

  string function_keysym(string const & fname, bool pre_agg=false) const
  {
    string mtype = (is_parallel() && !pre_agg) ? "pmap" : "map";
    string result = "_stp_" + mtype + "_" + fname + "_" + keysym();
    return result;
  }

  string call_prefix (string const & fname, vector<tmpvar> const & indices, bool pre_agg=false) const
  {
    string result = function_keysym(fname, pre_agg) + " (";
    result += pre_agg? fetch_existing_aggregate() : value();
    for (unsigned i = 0; i < indices.size(); ++i)
      {
	if (indices[i].type() != index_types[i])
	  throw SEMANTIC_ERROR(_("index type mismatch"));
	result += ", ";
	result += indices[i].value();
      }

    return result;
  }

  bool is_parallel() const
  {
    return type() == pe_stats;
  }

  string stat_op_tokens() const
  {
    string result = "";
    if (sd.stat_ops & STAT_OP_COUNT)
      result += "STAT_OP_COUNT, ";
    if (sd.stat_ops & STAT_OP_SUM)
      result += "STAT_OP_SUM, ";
    if (sd.stat_ops & STAT_OP_MIN)
      result += "STAT_OP_MIN, ";
    if (sd.stat_ops & STAT_OP_MAX)
      result += "STAT_OP_MAX, ";
    if (sd.stat_ops & STAT_OP_AVG)
      result += "STAT_OP_AVG, ";
    if (sd.stat_ops & STAT_OP_VARIANCE)
      result += "STAT_OP_VARIANCE, " + lex_cast(sd.bit_shift) + ", ";

    return result;
  }

  string stat_op_parms() const
  {
    string result = "";
    result += (sd.stat_ops & (STAT_OP_COUNT|STAT_OP_AVG|STAT_OP_VARIANCE)) ? "1, " : "0, ";
    result += (sd.stat_ops & (STAT_OP_SUM|STAT_OP_AVG|STAT_OP_VARIANCE)) ? "1, " : "0, ";
    result += (sd.stat_ops & STAT_OP_MIN) ? "1, " : "0, ";
    result += (sd.stat_ops & STAT_OP_MAX) ? "1, " : "0, ";
    result += (sd.stat_ops & STAT_OP_VARIANCE) ? "1" : "0";
    return result;
  }

  string calculate_aggregate() const
  {
    if (!is_parallel())
      throw SEMANTIC_ERROR(_("aggregating non-parallel map type"));

    return function_keysym("agg") + " (" + value() + ")";
  }

  string fetch_existing_aggregate() const
  {
    if (!is_parallel())
      throw SEMANTIC_ERROR(_("fetching aggregate of non-parallel map type"));

    return "_stp_pmap_get_agg(" + value() + ")";
  }

  string del (vector<tmpvar> const & indices) const
  {
    return (call_prefix("del", indices) + ")");
  }

  string exists (vector<tmpvar> const & indices) const
  {
    if (type() == pe_long || type() == pe_string)
      return (call_prefix("exists", indices) + ")");
    else if (type() == pe_stats)
      return ("((uintptr_t)" + call_prefix("get", indices)
	      + ") != (uintptr_t) 0)");
    else
      throw SEMANTIC_ERROR(_("checking existence of an unsupported map type"));
  }

  string get (vector<tmpvar> const & indices, bool pre_agg=false) const
  {
    // see also itervar::get_key
    if (type() == pe_string)
        // impedance matching: NULL -> empty strings
      return ("({ char *v = " + call_prefix("get", indices, pre_agg) + ");"
	      + "if (!v) v = \"\"; v; })");
    else if (type() == pe_long || type() == pe_stats)
      return call_prefix("get", indices, pre_agg) + ")";
    else
      throw SEMANTIC_ERROR(_("getting a value from an unsupported map type"));
  }

  string add (vector<tmpvar> const & indices, tmpvar const & val) const
  {
    string res = "{ int rc = ";

    // impedance matching: empty strings -> NULL
    if (type() == pe_stats)
      res += (call_prefix("add", indices) + ", " + val.value() + ", " + stat_op_parms() + ")");
    else
      throw SEMANTIC_ERROR(_("adding a value of an unsupported map type"));

    res += "; if (unlikely(rc)) { c->last_error = ";
    res += STAP_T_01 +
      lex_cast(maxsize > 0 ?
	  "size limit (" + lex_cast(maxsize) + ")" : "MAXMAPENTRIES")
      + "\"; goto out; }}";

    return res;
  }

  string set (vector<tmpvar> const & indices, tmpvar const & val) const
  {
    string res = "{ int rc = ";

    // impedance matching: empty strings -> NULL
    if (type() == pe_string)
      res += (call_prefix("set", indices)
	      + ", (" + val.value() + "[0] ? " + val.value() + " : NULL))");
    else if (type() == pe_long)
      res += (call_prefix("set", indices) + ", " + val.value() + ")");
    else
      throw SEMANTIC_ERROR(_("setting a value of an unsupported map type"));

    res += "; if (unlikely(rc)) { c->last_error = ";
    res += STAP_T_01 +
      lex_cast(maxsize > 0 ?
	  "size limit (" + lex_cast(maxsize) + ")" : "MAXMAPENTRIES")
      + "\"; goto out; }}";

    return res;
  }

  string hist() const
  {
    assert (ty == pe_stats);
    assert (sd.type != statistic_decl::none);
    return "(&(" + fetch_existing_aggregate() + "->hist))";
  }

  string buckets() const
  {
    assert (ty == pe_stats);
    assert (sd.type != statistic_decl::none);
    return "(" + fetch_existing_aggregate() + "->hist.buckets)";
  }

  string init () const
  {
    if (local)
      throw SEMANTIC_ERROR(_F("unsupported local map init for %s", value().c_str()));

    string prefix = "global_set(" + c_name() + ", ";
    prefix += function_keysym("new") + " ("
      + (is_parallel() ? stat_op_tokens() : "")
      + "KEY_MAPENTRIES, " + (maxsize > 0 ? lex_cast(maxsize) : "MAXMAPENTRIES") + ", "
      + ((wrap == true) ? "KEY_STAT_WRAP, " : "");

    // See also var::init().

    // Check for errors during allocation.
    string suffix = "if (" + value () + " == NULL) rc = -ENOMEM;";

    if (type() == pe_stats)
      {
	switch (sdecl().type)
	  {
	  case statistic_decl::none:
	    prefix = prefix + "KEY_HIST_TYPE, HIST_NONE, ";
	    break;

	  case statistic_decl::linear:
	    // FIXME: check for "reasonable" values in linear stats
	    prefix = prefix + "KEY_HIST_TYPE, HIST_LINEAR, "
	      + lex_cast(sdecl().linear_low) + ", "
	      + lex_cast(sdecl().linear_high) + ", "
	      + lex_cast(sdecl().linear_step) + ", ";
	    break;

	  case statistic_decl::logarithmic:
	    prefix = prefix + "KEY_HIST_TYPE, HIST_LOG, ";
	    break;
	  }
      }

    prefix += "NULL";

    prefix = prefix + ")); ";
    return (prefix + suffix);
  }

  string fini () const
  {
    // NB: fini() is safe to call even for globals that have not
    // successfully initialized (that is to say, on NULL pointers),
    // because the runtime specifically tolerates that in its _del
    // functions.

    if (is_parallel())
      return "_stp_pmap_del (" + value() + ");";
    else
      return "_stp_map_del (" + value() + ");";
  }
};


class itervar
  : public var
{
public:

  itervar (c_unparser *u, symbol* e, unsigned & counter)
    : var(u, true, e->referent->type, counter)
  {
    if (type() == pe_unknown)
      throw SEMANTIC_ERROR(_("iterating over unknown reference type"), e->tok);
  }

  void declare(c_unparser &c) const cxx_override
  {
    c.o->newline() << "struct map_node *" << name << ";";
  }

  string start (mapvar const & mv) const
  {
    string res;

    if (mv.type() != type())
      throw SEMANTIC_ERROR(_("inconsistent iterator type in itervar::start()"));

    if (mv.is_parallel())
      return "_stp_map_start (" + mv.fetch_existing_aggregate() + ")";
    else
      return "_stp_map_start (" + mv.value() + ")";
  }

  string next (mapvar const & mv) const
  {
    if (mv.type() != type())
      throw SEMANTIC_ERROR(_("inconsistent iterator type in itervar::next()"));

    if (mv.is_parallel())
      return "_stp_map_iter (" + mv.fetch_existing_aggregate() + ", " + value() + ")";
    else
      return "_stp_map_iter (" + mv.value() + ", " + value() + ")";
  }

  // Cannot handle deleting and iterating on pmaps
  string del_next (mapvar const & mv) const
  {
    if (mv.type() != type())
      throw SEMANTIC_ERROR(_("inconsistent iterator type in itervar::next()"));

    if (mv.is_parallel())
      throw SEMANTIC_ERROR(_("deleting a value of an unsupported map type"));
    else
      return "_stp_map_iterdel (" + mv.value() + ", " + value() + ")";
  }

  string get_key (mapvar const& mv, exp_type ty, unsigned i) const
  {
    // bug translator/1175: runtime uses base index 1 for the first dimension
    // see also mapval::get
    switch (ty)
      {
      case pe_long:
	return mv.function_keysym("key_get_int64", true)
	  + " (" + value() + ", " + lex_cast(i+1) + ")";
      case pe_string:
        // impedance matching: NULL -> empty strings
	return "(" + mv.function_keysym("key_get_str", true)
	  + " (" + value() + ", " + lex_cast(i+1) + ") ?: \"\")";
      default:
	throw SEMANTIC_ERROR(_("illegal key type"));
      }
  }

  string get_value (mapvar const& mv, exp_type ty) const
  {
    if (ty != type())
      throw SEMANTIC_ERROR(_("inconsistent iterator value in itervar::get_value()"));

    switch (ty)
      {
      case pe_long:
	return mv.function_keysym("get_int64", true) + " ("+ value() + ")";
      case pe_string:
        // impedance matching: NULL -> empty strings
	return "(" + mv.function_keysym("get_str", true) + " ("+ value() + ") ?: \"\")";
      case pe_stats:
	return mv.function_keysym("get_stat_data", true) + " ("+ value() + ")";
      default:
	throw SEMANTIC_ERROR(_("illegal value type"));
      }
  }
};

ostream & operator<<(ostream & o, itervar const & v)
{
  return o << v.value();
}

// ------------------------------------------------------------------------

// translator_output moved to translator-output.cxx

// ------------------------------------------------------------------------

struct unmodified_fnargs_checker : public nop_visitor
{
  bool is_embedded;
  bool has_unmodified_fnargs;

  unmodified_fnargs_checker ():
    is_embedded(false), has_unmodified_fnargs(false)
  {}

  void visit_embeddedcode (embeddedcode *e)
    {
      is_embedded = true;
      if (e->tagged_p("/* unmodified-fnargs */"))
	has_unmodified_fnargs = true;
    }
};

bool
is_unmodified_string_fnarg (systemtap_session* sess, functiondecl* fd, vardecl* v)
{
  if (sess->unoptimized || v->type != pe_string)
    return false;

  // if it's an embedded function, trust whether it has unmodified-fnargs
  unmodified_fnargs_checker ufc;
  fd->body->visit(& ufc);
  if (ufc.is_embedded)
    return ufc.has_unmodified_fnargs;

  varuse_collecting_visitor vut (*sess);
  vut.current_function = fd;
  fd->body->visit(& vut);
  return (vut.written.find(v) == vut.written.end());
}

// If we've seen a dupe, return it; else remember this and return NULL.
probe *
c_unparser::get_probe_dupe (derived_probe *dp)
{
  if (session->unoptimized)
    return NULL;

  // Notice we're using the probe body itself instead of the emitted C
  // probe body to compare probes.  We need to do this because the
  // emitted C probe body has stuff in it like:
  //   c->last_stmt = "identifier 'printf' at foo.stp:<line>:<column>";
  //
  // which would make comparisons impossible.

  ostringstream oss;

  dp->print_dupe_stamp (oss);
  dp->body->print(oss);

  // Since the generated C changes based on whether or not the probe
  // needs locks around global variables, this needs to be reflected
  // here.  We don't want to treat as duplicate the handlers of
  // begin/end and normal probes that differ only in need_global_locks.
  oss << "# needs_global_locks: " << dp->needs_global_locks () << endl;

  // NB: dependent probe conditions *could* be listed here, but don't need to
  // be.  That's because they're only dependent on the probe body, which is
  // already "hashed" in above.

  pair<map<string, probe*>::iterator, bool> const& inserted =
    probe_contents.insert(make_pair(oss.str(), dp));

  if (inserted.second)
    return NULL; // it's new!

  // Already seen it; here's the old one:
  return inserted.first->second;
}

void
c_unparser::emit_common_header ()
{
  c_tmpcounter ct (this);

  o->newline();

  // Per CPU context for probes. Includes common shared state held for
  // all probes (defined in common_probe_context), the probe locals (union)
  // and the function locals (union).
  o->newline() << "struct context {";

  // Common state held shared by probes.
  o->newline(1) << "#include \"common_probe_context.h\"";

  // PR10516: probe locals
  o->newline() << "union {";
  o->indent(1);

  for (unsigned i=0; i<session->probes.size(); i++)
    ct.emit_probe (session->probes[i]);

  o->newline(-1) << "} probe_locals;";

  // PR10516: function locals
  o->newline() << "union {";
  o->indent(1);

  for (map<string,functiondecl*>::iterator it = session->functions.begin();
       it != session->functions.end(); it++)
    ct.emit_function (it->second);

  o->newline(-1) << "} locals [MAXNESTING+1];"; 

  // NB: The +1 above for extra room for outgoing arguments of next nested function.
  // If MAXNESTING is set too small, the args will be written, but the MAXNESTING
  // check done at c_unparser::emit_function will reject.
  //
  // This policy wastes memory (one row of locals[] that cannot really
  // be used), but trades that for smaller code (not having to check
  // c->nesting against MAXNESTING at every call site).

  // Try to catch a crazy user dude passing in -DMAXNESTING=-1, leading to a [0]-sized
  // locals[] array.
  o->newline() << "#if MAXNESTING < 0";
  o->newline() << "#error \"MAXNESTING must be positive\"";
  o->newline() << "#endif";

  // Use a separate union for compiled-printf locals, no nesting required.
  emit_compiled_printf_locals ();

  o->newline(-1) << "};\n"; // end of struct context

  o->newline() << "#include \"runtime_context.h\"";

  emit_map_type_instantiations ();

  emit_compiled_printfs();

  if (!session->runtime_usermode_p())
    {
      // Updated in probe handlers to signal that a module refresh is needed.
      // Checked and cleared by common epilogue after scheduling refresh work.
      o->newline( 0)  << "static atomic_t need_module_refresh = ATOMIC_INIT(0);";

      // We will use a workqueue to schedule module_refresh work when we need
      // to enable/disable probes.
      o->newline( 0)  << "static struct work_struct module_refresher_work;";
      o->newline( 0)  << "static void module_refresher(struct work_struct *work) {";
      o->newline( 1)  <<    "systemtap_module_refresh(NULL);";
      o->newline(-1)  << "}";

      o->newline( 0)  << "#ifdef STP_ON_THE_FLY_TIMER_ENABLE";
      o->newline( 0)  << "#include \"timer.h\"";
      o->newline( 0)  << "static struct hrtimer module_refresh_timer;";

      o->newline( 0)  << "#ifndef STP_ON_THE_FLY_INTERVAL";
      o->newline( 0)  << "#define STP_ON_THE_FLY_INTERVAL (100*1000*1000)"; // default to 100 ms
      o->newline( 0)  << "#endif";

      o->newline( 0)  << "hrtimer_return_t module_refresh_timer_cb(struct hrtimer *timer);";
      o->newline( 0)  << "hrtimer_return_t module_refresh_timer_cb(struct hrtimer *timer) {";
      o->newline(+1)  <<   "if (atomic_cmpxchg(&need_module_refresh, 1, 0) == 1)";
      // NB: one might like to invoke systemtap_module_refresh(NULL) directly from
      // here ... however hrtimers are called from an unsleepable context, so no can do.
      o->newline(+1)  <<     "queue_work(systemtap_wq, &module_refresher_work);";
      o->newline(-1)  <<   "hrtimer_set_expires(timer,";
      o->newline( 0)  <<   "  ktime_add(hrtimer_get_expires(timer),";
      o->newline( 0)  <<   "            ktime_set(0, STP_ON_THE_FLY_INTERVAL))); ";
      o->newline( 0)  <<   "return HRTIMER_RESTART;";
      o->newline(-1)  << "}";
      o->newline( 0)  << "#endif /* STP_ON_THE_FLY_TIMER_ENABLE */";
    }

  o->newline(0) << "#include \"namespaces.h\"";

  o->newline();
}


void
c_unparser::declare_compiled_printf (bool print_to_stream, const string& format)
{
  pair<bool, string> index (print_to_stream, format);
  map<pair<bool, string>, string>::iterator it = compiled_printfs.find(index);
  if (it == compiled_printfs.end())
    compiled_printfs[index] = (print_to_stream ? "stp_printf_" : "stp_sprintf_")
      + lex_cast(compiled_printfs.size() + 1);
}

const string&
c_unparser::get_compiled_printf (bool print_to_stream, const string& format)
{
  map<pair<bool, string>, string>::iterator it =
    compiled_printfs.find(make_pair(print_to_stream, format));
  if (it == compiled_printfs.end())
    throw SEMANTIC_ERROR (_("internal error translating printf"));
  return it->second;
}

const string&
c_tmpcounter::get_compiled_printf (bool print_to_stream, const string& format)
{
  parent->declare_compiled_printf (print_to_stream, format);
  return parent->get_compiled_printf (print_to_stream, format);
}

void
c_unparser::emit_compiled_printf_locals ()
{
  o->newline() << "#ifndef STP_LEGACY_PRINT";
  o->newline() << "union {";
  o->indent(1);
  map<pair<bool, string>, string>::iterator it;
  for (it = compiled_printfs.begin(); it != compiled_printfs.end(); ++it)
    {
      bool print_to_stream = it->first.first;
      const string& format_string = it->first.second;
      const string& name = it->second;
      vector<print_format::format_component> components =
	print_format::string_to_components(format_string);

      o->newline() << "struct " << name << "_locals {";
      o->indent(1);

      size_t arg_ix = 0;
      vector<print_format::format_component>::const_iterator c;
      for (c = components.begin(); c != components.end(); ++c)
	{
	  if (c->type == print_format::conv_literal)
	    continue;

	  // Take note of the width and precision arguments, if any.
	  if (c->widthtype == print_format::width_dynamic)
	    o->newline() << "int64_t arg" << arg_ix++ << ";";
	  if (c->prectype == print_format::prec_dynamic)
	    o->newline() << "int64_t arg" << arg_ix++ << ";";

	  // Output the actual argument.
	  switch (c->type)
	    {
	    case print_format::conv_pointer:
	    case print_format::conv_number:
	    case print_format::conv_char:
	    case print_format::conv_memory:
	    case print_format::conv_memory_hex:
	    case print_format::conv_binary:
	      o->newline() << "int64_t arg" << arg_ix++ << ";";
	      break;

	    case print_format::conv_string:
	      // NB: Since we know incoming strings are immutable, we can use
	      // const char* rather than a private char[] copy.  This is a
	      // special case of the sort of optimizations desired in PR11528.
	      o->newline() << "const char* arg" << arg_ix++ << ";";
	      break;

	    default:
	      assert(false); // XXX
	      break;
	    }
	}


      if (!print_to_stream)
	o->newline() << "char * __retvalue;";

      o->newline(-1) << "} " << name << ";";
    }
  o->newline(-1) << "} printf_locals;";
  o->newline() << "#endif // STP_LEGACY_PRINT";
}

void
c_unparser::emit_compiled_printfs ()
{
  o->newline() << "#ifndef STP_LEGACY_PRINT";
  map<pair<bool, string>, string>::iterator it;
  for (it = compiled_printfs.begin(); it != compiled_printfs.end(); ++it)
    {
      bool print_to_stream = it->first.first;
      const string& format_string = it->first.second;
      const string& name = it->second;
      vector<print_format::format_component> components =
	print_format::string_to_components(format_string);

      o->newline();

      // Might be nice to output the format string in a comment, but we'd have
      // to be extra careful about format strings not escaping the comment...
      o->newline() << "static void " << name
		   << " (struct context* __restrict__ c) {";
      o->newline(1) << "struct " << name << "_locals * __restrict__ l = "
		    << "& c->printf_locals." << name << ";";
      o->newline() << "char *str = NULL, *end = NULL;";
      o->newline() << "const char *src;";
      o->newline() << "int width;";
      o->newline() << "int precision;";
      o->newline() << "unsigned long ptr_value;";
      o->newline() << "int num_bytes;";

      if (print_to_stream)
	  o->newline() << "unsigned long irqflags;";

      o->newline() << "(void) width;";
      o->newline() << "(void) precision;";
      o->newline() << "(void) ptr_value;";
      o->newline() << "(void) num_bytes;";

      if (print_to_stream)
        {
	  // Compute the buffer size needed for these arguments.
	  size_t arg_ix = 0;
	  o->newline() << "num_bytes = 0;";
	  vector<print_format::format_component>::const_iterator c;
	  for (c = components.begin(); c != components.end(); ++c)
	    {
	      if (c->type == print_format::conv_literal)
		{
		  literal_string ls(c->literal_string);
		  o->newline() << "num_bytes += sizeof(";
		  visit_literal_string(&ls);
		  o->line() << ") - 1;"; // don't count the '\0'
		  continue;
		}

	      o->newline() << "width = ";
	      if (c->widthtype == print_format::width_dynamic)
		o->line() << "clamp_t(int, l->arg" << arg_ix++
		          << ", 0, STP_BUFFER_SIZE);";
	      else if (c->widthtype == print_format::width_static)
		o->line() << "clamp_t(int, " << c->width
		          << ", 0, STP_BUFFER_SIZE);";
	      else
		o->line() << "-1;";

	      o->newline() << "precision = ";
	      if (c->prectype == print_format::prec_dynamic)
		o->line() << "clamp_t(int, l->arg" << arg_ix++
		          << ", 0, STP_BUFFER_SIZE);";
	      else if (c->prectype == print_format::prec_static)
		o->line() << "clamp_t(int, " << c->precision
		          << ", 0, STP_BUFFER_SIZE);";
	      else
		o->line() << "-1;";

	      string value = "l->arg" + lex_cast(arg_ix++);
	      switch (c->type)
		{
		case print_format::conv_pointer:
		  // NB: stap < 1.3 had odd %p behavior... see _stp_vsnprintf
		  if (strverscmp(session->compatible.c_str(), "1.3") < 0)
		    {
		      o->newline() << "ptr_value = " << value << ";";
		      o->newline() << "if (width == -1)";
		      o->newline(1) << "width = 2 + 2 * sizeof(void*);";
		      o->newline(-1) << "precision = width - 2;";
		      if (!c->test_flag(print_format::fmt_flag_left))
			o->newline() << "precision = min_t(int, precision, 2 * sizeof(void*));";
		      o->newline() << "num_bytes += number_size(ptr_value, "
			<< c->base << ", width, precision, " << c->flags << ");";
		      break;
		    }
		  /* Fallthrough */
		  // else fall-through to conv_number
		case print_format::conv_number:
		  o->newline() << "num_bytes += number_size(" << value << ", "
			       << c->base << ", width, precision, " << c->flags << ");";
		  break;

		case print_format::conv_char:
		  o->newline() << "num_bytes += _stp_vsprint_char_size("
			       << value << ", width, " << c->flags << ");";
		  break;

		case print_format::conv_string:
		  o->newline() << "num_bytes += _stp_vsprint_memory_size("
			       << value << ", width, precision, 's', "
			       << c->flags << ");";
		  break;

		case print_format::conv_memory:
		case print_format::conv_memory_hex:
		  o->newline() << "num_bytes += _stp_vsprint_memory_size("
			       << "(const char*)(intptr_t)" << value
			       << ", width, precision, '"
			       << ((c->type == print_format::conv_memory) ? "m" : "M")
			       << "', " << c->flags << ");";
		  break;

		case print_format::conv_binary:
		  o->newline() << "num_bytes += _stp_vsprint_binary_size("
			       << value << ", width, precision);";
		  break;

		default:
		  assert(false); // XXX
		  break;
		}
	    }

	  o->newline() << "num_bytes = clamp(num_bytes, 0, STP_BUFFER_SIZE);";
	  o->newline() << "if (!_stp_print_trylock_irqsave(&irqflags))";
	  o->newline(1) << "return;";
	  o->newline(-1) << "str = (char*)_stp_reserve_bytes(num_bytes);";
	  o->newline() << "end = str ? str + num_bytes - 1 : 0;";
        }
      else // !print_to_stream
	{
	  // String results are a known buffer and size;
	  o->newline() << "str = l->__retvalue;";
	  o->newline() << "end = str + MAXSTRINGLEN - 1;";
	}

      o->newline() << "if (str && str <= end) {";
      o->indent(1);

      // Generate code to print the actual arguments.
      size_t arg_ix = 0;
      vector<print_format::format_component>::const_iterator c;
      for (c = components.begin(); c != components.end(); ++c)
	{
	  if (c->type == print_format::conv_literal)
	    {
	      literal_string ls(c->literal_string);
	      o->newline() << "src = ";
	      visit_literal_string(&ls);
	      o->line() << ";";
	      o->newline() << "while (*src && str <= end)";
	      o->newline(1) << "*str++ = *src++;";
              o->indent(-1);
	      continue;
	    }

	  o->newline() << "width = ";
	  if (c->widthtype == print_format::width_dynamic)
	    o->line() << "clamp_t(int, l->arg" << arg_ix++
		      << ", 0, end - str + 1);";
	  else if (c->widthtype == print_format::width_static)
	    o->line() << "clamp_t(int, " << c->width
		      << ", 0, end - str + 1);";
	  else
	    o->line() << "-1;";

	  o->newline() << "precision = ";
	  if (c->prectype == print_format::prec_dynamic)
	    o->line() << "clamp_t(int, l->arg" << arg_ix++
		      << ", 0, end - str + 1);";
	  else if (c->prectype == print_format::prec_static)
	    o->line() << "clamp_t(int, " << c->precision
		      << ", 0, end - str + 1);";
	  else
	    o->line() << "-1;";

	  string value = "l->arg" + lex_cast(arg_ix++);
	  switch (c->type)
	    {
	    case print_format::conv_pointer:
	      // NB: stap < 1.3 had odd %p behavior... see _stp_vsnprintf
	      if (strverscmp(session->compatible.c_str(), "1.3") < 0)
		{
		  o->newline() << "ptr_value = " << value << ";";
		  o->newline() << "if (width == -1)";
		  o->newline(1) << "width = 2 + 2 * sizeof(void*);";
		  o->newline(-1) << "precision = width - 2;";
		  if (!c->test_flag(print_format::fmt_flag_left))
		    o->newline() << "precision = min_t(int, precision, 2 * sizeof(void*));";
		  o->newline() << "str = number(str, end, ptr_value, "
		    << c->base << ", width, precision, " << c->flags << ");";
		  break;
		}
	      /* Fallthrough */
	      // else fall-through to conv_number
	    case print_format::conv_number:
	      o->newline() << "str = number(str, end, " << value << ", "
			   << c->base << ", width, precision, " << c->flags << ");";
	      break;

	    case print_format::conv_char:
	      o->newline() << "str = _stp_vsprint_char(str, end, "
			   << value << ", width, " << c->flags << ");";
	      break;

	    case print_format::conv_string:
	      o->newline() << "str = _stp_vsprint_memory(str, end, "
			   << value << ", width, precision, 's', "
			   << c->flags << ");";
	      break;

	    case print_format::conv_memory:
	    case print_format::conv_memory_hex:
	      o->newline() << "str = _stp_vsprint_memory(str, end, "
			   << "(const char*)(intptr_t)" << value
			   << ", width, precision, '"
			   << ((c->type == print_format::conv_memory) ? "m" : "M")
			   << "', " << c->flags << ");";
	      o->newline() << "if (unlikely(str == NULL)) {";
	      o->indent(1);
	      if (print_to_stream)
                {
		  o->newline() << "_stp_unreserve_bytes(num_bytes);";
	          o->newline() << "goto err_unlock;";
                }
              else
                {
	          o->newline() << "return;";
                }
	      o->newline(-1) << "}";
	      break;

	    case print_format::conv_binary:
	      o->newline() << "str = _stp_vsprint_binary(str, end, "
			   << value << ", width, precision, "
			   << c->flags << ");";
	      break;

	    default:
	      assert(false); // XXX
	      break;
	    }
	}

      if (!print_to_stream)
	{
	  o->newline() << "if (str <= end)";
	  o->newline(1) << "*str = '\\0';";
	  o->newline(-1) << "else";
	  o->newline(1) << "*end = '\\0';";
	  o->indent(-1);
	}

      o->newline(-1) << "}";

      if (print_to_stream)
        {
          o->newline(-1) << "err_unlock:";
          o->newline(1) << "_stp_print_unlock_irqrestore(&irqflags);";
        }
      o->newline(-1) << "}";
    }
  o->newline() << "#endif // STP_LEGACY_PRINT";
}


void
c_unparser::emit_global_param (vardecl *v)
{
  // Only true globals can be params, not private variables.
  if (!v->name.starts_with("__global_")) return;

  // Only non-synthetic globals can be params.
  if (v->synthetic) return;

  string global = c_globalname (v->name);
  interned_string param = v->name.substr(sizeof("__global_") - 1);

  // For dyninst, use the emit_global_init_* functionality instead.
  assert (!session->runtime_usermode_p());

  // NB: systemtap globals can collide with linux macros,
  // e.g. VM_FAULT_MAJOR.  We want the parameter name anyway.  This
  // #undef is spit out at the end of the C file, so that removing the
  // definition won't affect any other embedded-C or generated code.
  // XXX: better not have a global variable named module_param_named etc.!
  o->newline() << "#undef " << param; // avoid colliding with non-mangled name

  // Emit module_params for this global, if its type is convenient.
  if (v->arity == 0 && v->type == pe_long)
    {
      o->newline() << "module_param_named (" << param << ", "
                   << "global(" << global << "), int64_t, 0);";
    }
  else if (v->arity == 0 && v->type == pe_string)
    {
      // NB: no special copying is needed.
      o->newline() << "module_param_string (" << param << ", "
                   << "global(" << global << "), MAXSTRINGLEN, 0);";
    }
}


void
c_unparser::emit_global_init_setters ()
{
  // Hack for dyninst module params: setter function forms a little
  // linear lookup table ditty to find a global variable by name.
  o->newline() << "int stp_global_setter (const char *name, const char *value) {";
  o->newline(1);
  for (unsigned i=0; i<session->globals.size(); i++)
    {
      vardecl* v = session->globals[i];
      if (v->arity > 0) continue;
      if (v->type != pe_string && v->type != pe_long) continue;

      // Only true globals can be params, not private variables.
      if (!v->name.starts_with("__global_")) continue;

      string global = c_globalname (v->name);
      interned_string param = v->name.substr(sizeof("__global_") - 1);

      // Do not mangle v->name for the comparison!
      o->line() << "if (0 == strcmp(name,\"" << param << "\"))" << " {";

      o->indent(1);
      if (v->type == pe_string)
        {
          c_assign("stp_global_init." + global, "value", pe_string, "BUG: global module param", v->tok);
          o->newline() << "return 0;";
        }
      else
        {
          o->newline() << "return set_int64_t(value, &stp_global_init." << global << ");";
        }

      o->newline(-1) << "} else ";
    }

  // Call the runtime function that handles session attributes, like
  // log_level, etc.
  o->line() << "return stp_session_attribute_setter(name, value);";
  o->newline(-1) << "}";
  o->newline();
}


void
c_unparser::emit_global (vardecl *v)
{
  string vn = c_globalname (v->name);

  string type;
  if (v->arity > 0)
    type = (v->type == pe_stats) ? "PMAP" : "MAP";
  else
    type = c_typename (v->type);

  if (session->runtime_usermode_p())
    {
      // In stapdyn mode, the stat/map/pmap pointers are stored as offptr_t in
      // shared memory.  However, we can keep a little type safety by emitting
      // FOO_typed and using typeof(FOO_typed) in the global() macros.
      bool offptr_p  = (v->type == pe_stats) || (v->arity > 0);
      string stored_type = offptr_p ? "offptr_t" : type;

      // NB: The casted_type is in the unused side of a __builtin_choose_expr
      // for non-offptr types, so it doesn't matter what we put for them, as
      // long as it passes syntax long enough for gcc to choose the other expr.
      string casted_type = offptr_p ? type : "void*";

      o->newline() << "union {";
      o->newline(1) << casted_type << " " << vn << "_typed;";
      o->newline() << stored_type << " " << vn << ";";
      o->newline(-1) << "};";
    }
  else
    o->newline() << type << " " << vn << ";";

  o->newline() << "stp_rwlock_t " << vn << "_lock;";
  o->newline() << "#ifdef STP_TIMING";
  o->newline() << "atomic_t " << vn << "_lock_skip_count;";
  o->newline() << "atomic_t " << vn << "_lock_contention_count;";
  o->newline() << "#endif\n";
}


void
c_unparser::emit_global_init (vardecl *v)
{
  // We can only statically initialize some scalars.
  if (v->arity == 0 && v->init)
    {
      o->newline() << "." << c_globalname (v->name) << " = ";
      v->init->visit(this);
      o->line() << ",";
    }
  else if (v->arity == 0 && session->runtime_usermode_p())
    {
      // For dyninst: always try to put a default value into the initial
      // static structure, so we don't have to guess if it was customized.
      if (v->type == pe_long)
        o->newline() << "." << c_globalname (v->name) << " = 0,";
      else if (v->type == pe_string)
        o->newline() << "." << c_globalname (v->name) << " = { '\\0' },"; // XXX: ""
    }
  // The lock and lock_skip_count are handled in emit_module_init.
}


void
c_unparser::emit_global_init_type (vardecl *v)
{
  // We can only statically initialize some scalars.
  if (v->arity == 0) // ... although we still allow !v->init here.
    {
      o->newline() << c_typename(v->type) << " " << c_globalname(v->name) << ";";
    }
}


void
c_unparser::emit_functionsig (functiondecl* v)
{
  bool funcname_shortened;
  string funcname = c_funcname (v->name, funcname_shortened);
  if (funcname_shortened)
    o->newline() << "/* " << v->name << " */";
  o->newline() << "static void " << funcname
	       << " (struct context * __restrict__ c);";
}


void
c_unparser::emit_kernel_module_init ()
{
  if (session->runtime_usermode_p())
    return;

  o->newline();
  o->newline() << "static int systemtap_kernel_module_init (void) {";
  o->newline(1) << "int rc = 0;";
  o->newline() << "int i=0, j=0;"; // for derived_probe_group use

  vector<derived_probe_group*> g = all_session_groups (*session);
  for (unsigned i=0; i<g.size(); i++)
    {
      g[i]->emit_kernel_module_init (*session);

      o->newline() << "if (rc) {";
      o->indent(1);
      if (i>0)
        {
	  for (int j=i-1; j>=0; j--)
	    g[j]->emit_kernel_module_exit (*session);
	}
      o->newline() << "goto out;";
      o->newline(-1) << "}";
    }
  o->newline(-1) << "out:";
  o->indent(1);
  o->newline() << "return rc;";
  o->newline(-1) << "}\n";
  o->assert_0_indent(); 
}


void
c_unparser::emit_kernel_module_exit ()
{
  if (session->runtime_usermode_p())
    return;

  o->newline();
  o->newline() << "static void systemtap_kernel_module_exit (void) {";
  o->newline(1) << "int i=0, j=0;"; // for derived_probe_group use

  // We're processing the derived_probe_group list in reverse order.
  // This ensures that probe groups get unregistered in reverse order
  // of the way they were registered.
  vector<derived_probe_group*> g = all_session_groups (*session);
  for (vector<derived_probe_group*>::reverse_iterator i = g.rbegin();
       i != g.rend(); i++)
    {
      (*i)->emit_kernel_module_exit (*session);
    }
  o->newline(-1) << "}\n";
  o->assert_0_indent(); 
}


void
c_unparser::emit_module_init ()
{
  vector<derived_probe_group*> g = all_session_groups (*session);
  for (unsigned i=0; i<g.size(); i++)
    {
      g[i]->emit_module_decls (*session);
      o->assert_0_indent(); 
    }

  o->newline() << "#ifdef STAP_NEED_TRACEPOINTS";
  o->newline() << "#include \"linux/stp_tracepoint.c\"";
  o->newline() << "#endif";

  o->newline();
  o->newline() << "static int systemtap_module_init (void) {";
  o->newline(1) << "int rc = 0;";
  o->newline() << "int cpu;";
  o->newline() << "int i=0, j=0;"; // for derived_probe_group use
  o->newline() << "const char *probe_point = \"\";";

  // NB: This block of initialization only makes sense in kernel
  if (! session->runtime_usermode_p())
  {
      if (!session->runtime_usermode_p())
        {
          o->newline() << "#if defined(STP_TIMING)";
          o->newline() << "#ifdef STP_TIMING_NSECS";
          o->newline() << "s64 cycles_atstart = ktime_get_ns();";
          o->newline() << "#else";
          o->newline() << "cycles_t cycles_atstart = get_cycles();";
          o->newline() << "#endif";
          o->newline() << "#endif";
        }

      // XXX Plus, most of this code is completely static, so it probably should
      // move into the runtime, where kernel/dyninst is more easily separated.

      // The systemtap_module_init() function must be run in
      // non-atomic context, since several functions might need to
      // sleep.
      o->newline() << "might_sleep();";

      // PR26074: kallsyms lookups that need to happen potentially
      // *after* getting relocations, in order to have
      // access to kallsyms_lookup_name():
      o->newline() << "rc = _stp_handle_kallsyms_lookups();";
      o->newline() << "if (rc) goto out;";

      // Compare actual and targeted kernel releases/machines.  Sometimes
      // one may install the incorrect debuginfo or -devel RPM, and try to
      // run a probe compiled for a different version.  Catch this early,
      // just in case modversions didn't.
      o->newline() << "{";
      o->newline() << "#ifndef STP_NO_VERREL_CHECK";
      o->newline(1) << "const char* release = UTS_RELEASE;";
      o->newline() << "#ifdef STAPCONF_GENERATED_COMPILE";
      o->newline() << "const char* version = UTS_VERSION;";
      o->newline() << "#endif";

      // NB: This UTS_RELEASE compile-time macro directly checks only that
      // the compile-time kbuild tree matches the compile-time debuginfo/etc.
      // It does not check the run time kernel value.  However, this is
      // probably OK since the kbuild modversions system aims to prevent
      // mismatches between kbuild and runtime versions at module-loading time.

      // o->newline() << "const char* machine = UTS_MACHINE;";
      // NB: We could compare UTS_MACHINE too, but on x86 it lies
      // (UTS_MACHINE=i386, but uname -m is i686).  Sheesh.

      // Now optional as the comparison of two compile-time values is vacuous:
      o->newline() << "#ifdef STP_FULL_VERREL_CHECK";
      o->newline() << "if (strcmp (release, "
		   << lex_cast_qstring (session->kernel_release) << ")) {";
      o->newline(1) << "_stp_error (\"module release mismatch (%s vs %s)\", "
		    << "release, "
		    << lex_cast_qstring (session->kernel_release)
		    << ");";
      o->newline() << "rc = -EINVAL;";
      o->newline(-1) << "}";
      o->newline() << "#endif";

      o->newline() << "#ifdef STAPCONF_GENERATED_COMPILE";
      o->newline() << "if (strcmp (utsname()->version, version)) {";
      o->newline(1) << "_stp_error (\"module version mismatch (%s vs %s), release %s\", "
		    << "version, "
		    << "utsname()->version, "
		    << "release"
		    << ");";
      o->newline() << "rc = -EINVAL;";
      o->newline(-1) << "}";
      o->newline() << "#endif";
      o->newline() << "#endif";

      // perform buildid-based checking if able
      o->newline() << "if (_stp_module_check()) rc = -EINVAL;";

      // Perform checking on the user's credentials vs those required to load/run this module.
      o->newline() << "if (_stp_privilege_credentials == 0) {";
      o->newline(1) << "if (STP_PRIVILEGE_CONTAINS(STP_PRIVILEGE, STP_PR_STAPDEV) ||";
      o->newline() << "    STP_PRIVILEGE_CONTAINS(STP_PRIVILEGE, STP_PR_STAPUSR)) {";
      o->newline(1) << "_stp_privilege_credentials = STP_PRIVILEGE;";
      o->newline() << "#ifdef DEBUG_PRIVILEGE";
      o->newline(1) << "_dbug(\"User's privilege credentials default to %s\\n\",";
      o->newline() << "      privilege_to_text(_stp_privilege_credentials));";
      o->newline(-1) << "#endif";
      o->newline(-1) << "}";
      o->newline() << "else {";
      o->newline(1) << "_stp_error (\"Unable to verify that you have the required privilege credentials to run this module (%s required). You must use staprun version 1.7 or higher.\",";
      o->newline() << "            privilege_to_text(STP_PRIVILEGE));";
      o->newline() << "rc = -EINVAL;";
      o->newline(-1) << "}";
      o->newline(-1) << "}";
      o->newline() << "else {";
      o->newline(1) << "#ifdef DEBUG_PRIVILEGE";
      o->newline(1) << "_dbug(\"User's privilege credentials provided as %s\\n\",";
      o->newline() << "      privilege_to_text(_stp_privilege_credentials));";
      o->newline(-1) << "#endif";
      o->newline() << "if (! STP_PRIVILEGE_CONTAINS(_stp_privilege_credentials, STP_PRIVILEGE)) {";
      o->newline(1) << "_stp_error (\"Your privilege credentials (%s) are insufficient to run this module (%s required).\",";
      o->newline () << "            privilege_to_text(_stp_privilege_credentials), privilege_to_text(STP_PRIVILEGE));";
      o->newline() << "rc = -EINVAL;";
      o->newline(-1) << "}";
      o->newline(-1) << "}";

      o->newline(-1) << "}";

      o->newline() << "if (rc) goto out;";
  }

  // Now that kernel version and permissions are correct,
  // initialize the global session states before anything else.
  o->newline() << "rc = stp_session_init();";
  o->newline() << "if (rc) {";
  o->newline(1) << "_stp_error (\"couldn't initialize the main session (rc %d)\", rc);";
  o->newline() << "goto out;";
  o->newline(-1) << "}";

  // This signals any other probes that may be invoked in the next little
  // while to abort right away.  Currently running probes are allowed to
  // terminate.  These may set STAP_SESSION_ERROR!
  //
  // Note that this *must* be done after stp_session_init() is called,
  // since that initializes the dyninst session atomics. Note that we
  // don't want to run systemtap_module_init() twice.
  o->newline() << "if (atomic_cmpxchg(session_state(), STAP_SESSION_UNINITIALIZED, STAP_SESSION_STARTING) != STAP_SESSION_UNINITIALIZED) {";
  o->newline(1) << "_stp_error (\"session has already been initialized\");";
  // Note that here we don't want to jump to "out", since we don't
  // want to deregister anything, we just want to return.
  o->newline() << "return -EALREADY;";
  o->newline(-1) << "}";

  // initialize gettimeofday (if needed)
  o->newline() << "#ifdef STAP_NEED_GETTIMEOFDAY";
  o->newline() << "rc = _stp_init_time();";  // Kick off the Big Bang.
  o->newline() << "if (rc) {";
  o->newline(1) << "_stp_error (\"couldn't initialize gettimeofday\");";
  o->newline() << "goto out;";
  o->newline(-1) << "}";
  o->newline() << "#endif";

  // initialize tracepoints (if needed)
  o->newline() << "#ifdef STAP_NEED_TRACEPOINTS";
  o->newline() << "rc = stp_tracepoint_init();";
  o->newline() << "if (rc) {";
  o->newline(1) << "_stp_error (\"couldn't initialize tracepoints\");";
  o->newline() << "goto out;";
  o->newline(-1) << "}";
  o->newline() << "#endif";

  // initialize stack setup (if needed)
  o->newline() << "#ifdef STP_NEED_UNWIND_DATA";
  o->newline() << "rc = _stp_init_stack();";
  o->newline() << "if (rc) {";
  o->newline(1) << "_stp_error (\"couldn't initialize stack support\");";
  o->newline() << "goto out;";
  o->newline(-1) << "}";
  o->newline() << "#endif";

  // NB: we don't need per-_stp_module task_finders, since a single common one
  // set up in runtime/sym.c's _stp_sym_init() will scan through all _stp_modules. XXX - check this!
  o->newline() << "(void) probe_point;";
  o->newline() << "(void) i;";
  o->newline() << "(void) j;";

  // Allocate context structures.
  o->newline() << "rc = _stp_runtime_contexts_alloc();";
  o->newline() << "if (rc != 0)";
  o->newline(1) << "goto out;";
  o->indent(-1);

  for (unsigned i=0; i<session->globals.size(); i++)
    {
      vardecl* v = session->globals[i];
      if (v->index_types.size() > 0)
	o->newline() << getmap (v).init();
      else if (session->runtime_usermode_p() && v->arity == 0
               && (v->type == pe_long || v->type == pe_string))
	c_assign(getvar (v).value(), "stp_global_init." + c_globalname(v->name), v->type, "BUG: global initialization", v->tok);
      else
	o->newline() << getvar (v).init();
      // NB: in case of failure of allocation, "rc" will be set to non-zero.
      // Allocation can in general continue.

      o->newline() << "if (rc) {";
      o->newline(1) << "_stp_error (\"global variable '" << v->name << "' allocation failed\");";
      o->newline() << "goto out;";
      o->newline(-1) << "}";

      o->newline() << "global_lock_init(" << c_globalname (v->name) << ");";
      o->newline() << "#ifdef STP_TIMING";
      o->newline() << "atomic_set(global_skipped(" << c_globalname (v->name) << "), 0);";
      o->newline() << "atomic_set(global_contended(" << c_globalname (v->name) << "), 0);";
      o->newline() << "#endif";
    }

  // Print a message to the kernel log about this module.  This is
  // intended to help debug problems with systemtap modules.
  if (! session->runtime_usermode_p())
    o->newline() << "_stp_print_kernel_info("
                 << "\"" << escaped_literal_string(session->script_basename()) << "\""
                 << ", \"" << VERSION
                 << "/" << dwfl_version (NULL) << "\""
                 << ", (num_online_cpus() * sizeof(struct context))"
                 << ", " << session->probes.size()
                 << ");";
  // In dyninst mode, we need to know when all the globals have been
  // allocated and we're ready to run probe registration.
  else
    {
      o->newline() << "rc = stp_session_init_finished();";
      o->newline() << "if (rc) goto out;";
    }

  if (!session->runtime_usermode_p())
    {
      // Initialize workqueue needed for on-the-fly arming/disarming
      o->newline() << "INIT_WORK(&module_refresher_work, module_refresher);";
    }

  // Run all probe registrations.  This actually runs begin probes.

  for (unsigned i=0; i<g.size(); i++)
    {
      g[i]->emit_module_init (*session);
      // NB: this gives O(N**2) amount of code, but luckily there
      // are only seven or eight derived_probe_groups, so it's ok.
      o->newline() << "if (rc) {";
      // If a probe types's emit_module_init() wants to handle error
      // messages itself, it should set probe_point to NULL, 
      o->newline(1) << "if (probe_point)";
      o->newline(1) << "_stp_error (\"probe %s registration error [man warning::pass5] (rc %d)\", probe_point, rc);";
      o->indent(-1);
      // NB: we need to be in the error state so timers can shutdown cleanly,
      // and so end probes don't run.  OTOH, error probes can run.
      o->newline() << "atomic_set (session_state(), STAP_SESSION_ERROR);";
      if (i>0)
        for (int j=i-1; j>=0; j--)
          g[j]->emit_module_exit (*session);
      o->newline() << "goto out;";
      o->newline(-1) << "}";
    }

  // All registrations were successful.  Consider the system started.
  // NB: only other valid state value is ERROR, in which case we don't
  o->newline() << "atomic_cmpxchg(session_state(), STAP_SESSION_STARTING, STAP_SESSION_RUNNING);";

  // Run all post-session starting code.
  for (unsigned i=0; i<g.size(); i++)
    {
      g[i]->emit_module_post_init (*session);
    }

  if (!session->runtime_usermode_p())
    {
      o->newline() << "#ifdef STP_ON_THE_FLY_TIMER_ENABLE";

      // Initialize hrtimer needed for on-the-fly arming/disarming
      o->newline() << "hrtimer_init(&module_refresh_timer, CLOCK_MONOTONIC,";
      o->newline() << "             HRTIMER_MODE_REL);";
      o->newline() << "module_refresh_timer.function = &module_refresh_timer_cb;";

      // We check here if it's worth it to start the timer at all. We only need
      // the background timer if there is a probe which doesn't support directy
      // scheduling work (otf_safe_context() == false), but yet does affect the
      // condition of at least one probe which supports on-the-fly operations.
      {
        // for each derived probe...
        bool start_timer = false;
        for (unsigned i=0; i<session->probes.size() && !start_timer; i++)
          {
            // if it isn't safe in this probe type to directly schedule work,
            // and this probe could affect other probes...
            if (session->probes[i]->group
                && !session->probes[i]->group->otf_safe_context(*session)
                && !session->probes[i]->probes_with_affected_conditions.empty())
              {
                // and if any of those possible probes support on-the-fly operations,
                // then we'll need the timer
                for (set<derived_probe*>::const_iterator
                      it  = session->probes[i]->probes_with_affected_conditions.begin();
                      it != session->probes[i]->probes_with_affected_conditions.end()
                            && !start_timer; ++it)
                  {
                    if ((*it)->group && (*it)->group->otf_supported(*session))
                      start_timer = true;
                  }
              }
          }

        if (start_timer)
          {
            o->newline() << "hrtimer_start(&module_refresh_timer,";
            o->newline() << "              ktime_set(0, STP_ON_THE_FLY_INTERVAL),";
            o->newline() << "              HRTIMER_MODE_REL);";
          }
      }

      o->newline() << "#endif /* STP_ON_THE_FLY_TIMER_ENABLE */";
    }

  if (!session->runtime_usermode_p())
    {
      // see also common_probe_entryfn_epilogue()
      o->newline() << "#if defined(STP_TIMING)";
      o->newline() << "if (likely(g_module_init_timing)) {";
      o->newline() << "#ifdef STP_TIMING_NSECS";
      o->newline(1) << "s64 cycles_atend = ktime_get_ns ();";
      o->newline() << "s64 cycles_elapsed = ((s64)cycles_atend > (s64)cycles_atstart)";
      o->newline(1) << "? ((s64)cycles_atend - (s64)cycles_atstart)";
      o->newline() << ": (~(s64)0) - (s64)cycles_atstart + (s64)cycles_atend + 1;";
      o->newline(-2) << "#else";
      o->newline(1) << "cycles_t cycles_atend = get_cycles ();";
      o->newline() << "int32_t cycles_elapsed = ((int32_t)cycles_atend > (int32_t)cycles_atstart)";
      o->newline(1) << "? ((int32_t)cycles_atend - (int32_t)cycles_atstart)";
      o->newline() << ": (~(int32_t)0) - (int32_t)cycles_atstart + (int32_t)cycles_atend + 1;";
      o->newline(-2) << "#endif";
      // STP_TIMING requires min, max, avg (and thus count and sum) as well as variance.
      o->newline(1) << "preempt_disable();";
      o->newline() << "_stp_stat_add(g_module_init_timing, cycles_elapsed, 1, 1, 1, 1, 1);";
      o->newline() << "preempt_enable_no_resched();";
      o->newline(-1) << "}";
      o->newline() << "#endif";
    }

  o->newline() << "return 0;";

  // Error handling path; by now all partially registered probe groups
  // have been unregistered.
  o->newline(-1) << "deref_fault: __attribute__((unused));";
  o->newline(0) << "out:";
  o->indent(1);

  // If any registrations failed, we will need to deregister the globals,
  // as this is our only chance.
  for (unsigned i=0; i<session->globals.size(); i++)
    {
      vardecl* v = session->globals[i];
      if (v->index_types.size() > 0)
	o->newline() << getmap (v).fini();
      else
	o->newline() << getvar (v).fini();
    }

  // For any partially registered/unregistered kernel facilities.
  o->newline() << "atomic_set (session_state(), STAP_SESSION_STOPPED);";
  o->newline() << "stp_synchronize_sched();";

  // In case tracepoints were started, they need to be cleaned up
  o->newline() << "#ifdef STAP_NEED_TRACEPOINTS";
  o->newline() << " stp_tracepoint_exit();";
  o->newline() << "#endif";

  // In case gettimeofday was started, it needs to be stopped
  o->newline() << "#ifdef STAP_NEED_GETTIMEOFDAY";
  o->newline() << " _stp_kill_time();";  // An error is no cause to hurry...
  o->newline() << "#endif";

  // Free up the context memory after an error too
  o->newline() << "_stp_runtime_contexts_free();";

  // Free up any timing Stats in case STP_TIMING was used
  if (!session->runtime_usermode_p())
    o->newline() << "stp_session_exit();";

  o->newline() << "return rc;";
  o->newline(-1) << "}\n";
}


void
c_unparser::emit_module_refresh ()
{
  o->newline() << "static void systemtap_module_refresh (const char *modname) {";
  o->newline(1) << "int state;";
  o->newline() << "int i=0, j=0;"; // for derived_probe_group use

  if (!session->runtime_usermode_p())
    {
      o->newline() << "#if defined(STP_TIMING)";
      o->newline() << "#ifdef STP_TIMING_NSECS";
      o->newline() << "s64 cycles_atstart = ktime_get_ns();";
      o->newline() << "#else";
      o->newline() << "cycles_t cycles_atstart = get_cycles();";
      o->newline() << "#endif";
      o->newline() << "#endif";
    }

  // Ensure we're only doing the refreshing one at a time. NB: it's important
  // that we get the lock prior to checking the session_state, in case whoever
  // is holding the lock (e.g. systemtap_module_exit()) changes it.
  if (!session->runtime_usermode_p())
    o->newline() << "mutex_lock(&module_refresh_mutex);";

  /* If we're not in STARTING/RUNNING state, don't try doing any work.
     PR16766.  We don't want to run refresh ops during e.g. STOPPING,
     so as to possibly activate uprobes near shutdown. */
  o->newline() << "state = atomic_read (session_state());";
  o->newline() << "if (state != STAP_SESSION_RUNNING && state != STAP_SESSION_STARTING) {";
  o->newline(1);
  if (!session->runtime_usermode_p())
    o->newline() << "mutex_unlock(&module_refresh_mutex);";
  o->newline() << "return;";
  o->newline(-1) << "}";

  o->newline() << "(void) i;";
  o->newline() << "(void) j;";

  vector<derived_probe_group*> g = all_session_groups (*session);
  for (unsigned i=0; i<g.size(); i++)
    {
      g[i]->emit_module_refresh (*session);
    }

  if (!session->runtime_usermode_p())
    {
      // see also common_probe_entryfn_epilogue()
      o->newline() << "#if defined(STP_TIMING)";
      o->newline() << "if (likely(g_refresh_timing)) {";
      o->newline() << "#ifdef STP_TIMING_NSECS";
      o->newline(1) << "s64 cycles_atend = ktime_get_ns ();";
      o->newline() << "s64 cycles_elapsed = ((s64)cycles_atend > (s64)cycles_atstart)";
      o->newline(1) << "? ((s64)cycles_atend - (s64)cycles_atstart)";
      o->newline() << ": (~(s64)0) - (s64)cycles_atstart + (s64)cycles_atend + 1;";
      o->newline(-2) << "#else";
      o->newline(1) << "cycles_t cycles_atend = get_cycles ();";
      o->newline() << "int32_t cycles_elapsed = ((int32_t)cycles_atend > (int32_t)cycles_atstart)";
      o->newline(1) << "? ((int32_t)cycles_atend - (int32_t)cycles_atstart)";
      o->newline() << ": (~(int32_t)0) - (int32_t)cycles_atstart + (int32_t)cycles_atend + 1;";
      o->newline(-2) << "#endif";
      // STP_TIMING requires min, max, avg (and thus count and sum) as well as variance.
      o->newline(1) << "preempt_disable();";
      o->newline() << "_stp_stat_add(g_refresh_timing, cycles_elapsed, 1, 1, 1, 1, 1);";
      o->newline() << "preempt_enable_no_resched();";      
      o->newline(-1) << "}";
      o->newline() << "#endif";
    }

  if (!session->runtime_usermode_p())
    o->newline() << "mutex_unlock(&module_refresh_mutex);";

  o->newline(-1) << "}\n";
}


void
c_unparser::emit_module_exit ()
{
  o->newline() << "static void systemtap_module_exit (void) {";
  // rc?
  o->newline(1) << "int i=0, j=0;"; // for derived_probe_group use
  o->newline() << "(void) i;";
  o->newline() << "(void) j;";
  // If we aborted startup, then everything has been cleaned up already, and
  // module_exit shouldn't even have been called.  But since it might be, let's
  // beat a hasty retreat to avoid double uninitialization.
  o->newline() << "if (atomic_read (session_state()) == STAP_SESSION_STARTING)";
  o->newline(1) << "return;";
  o->indent(-1);

  o->newline() << "if (atomic_read (session_state()) == STAP_SESSION_RUNNING)";
  // NB: only other valid state value is ERROR, in which case we don't
  o->newline(1) << "atomic_set (session_state(), STAP_SESSION_STOPPING);";
  o->indent(-1);
  // This signals any other probes that may be invoked in the next little
  // while to abort right away.  Currently running probes are allowed to
  // terminate.  These may set STAP_SESSION_ERROR!

  if (!session->runtime_usermode_p())
    {
      o->newline() << "#ifdef STP_ON_THE_FLY_TIMER_ENABLE";
      o->newline() << "hrtimer_cancel(&module_refresh_timer);";
      o->newline() << "#endif";
    }

  // cargo cult prologue ... hope to flush any pending workqueue items too
  o->newline() << "stp_synchronize_sched();";

  // Get the lock before exiting to ensure there's no one in module_refresh
  // NB: this should't be able to happen, because both the module_refresh_timer
  // and the workqueue ought to have been shut down by now.
  if (!session->runtime_usermode_p())
    o->newline() << "mutex_lock(&module_refresh_mutex);";

  // We're processing the derived_probe_group list in reverse
  // order.  This ensures that probes get unregistered in reverse
  // order of the way they were registered.
  vector<derived_probe_group*> g = all_session_groups (*session);
  for (vector<derived_probe_group*>::reverse_iterator i = g.rbegin();
       i != g.rend(); i++)
    (*i)->emit_module_exit (*session); // NB: runs "end" probes

  if (!session->runtime_usermode_p())
    o->newline() << "mutex_unlock(&module_refresh_mutex);";

  // But some other probes may have launched too during unregistration.
  // Let's wait a while to make sure they're all done, done, done.

  // cargo cult prologue
  o->newline() << "stp_synchronize_sched();";

  // NB: systemtap_module_exit is assumed to be called from ordinary
  // user context, say during module unload.  Among other things, this
  // means we can sleep a while.
  o->newline() << "_stp_runtime_context_wait();";

  // cargo cult epilogue
  o->newline() << "atomic_set (session_state(), STAP_SESSION_STOPPED);";
  o->newline() << "stp_synchronize_sched();";

  // XXX: might like to have an escape hatch, in case some probe is
  // genuinely stuck somehow

  for (unsigned i=0; i<session->globals.size(); i++)
    {
      vardecl* v = session->globals[i];
      if (v->index_types.size() > 0)
	o->newline() << getmap (v).fini();
      else
	o->newline() << getvar (v).fini();
    }

  // We're finished with the contexts if we're not in dyninst
  // mode. The dyninst mode needs the contexts, since print buffers
  // are stored there.
  if (!session->runtime_usermode_p())
    {
      o->newline() << "_stp_runtime_contexts_free();";
    }
  else
    {
      o->newline() << "struct context* __restrict__ c;";
      o->newline() << "c = _stp_runtime_entryfn_get_context();";
    }

  // teardown tracepoints (if needed)
  o->newline() << "#ifdef STAP_NEED_TRACEPOINTS";
  o->newline() << " stp_tracepoint_exit();";
  o->newline() << "#endif";

  // teardown gettimeofday (if needed)
  o->newline() << "#ifdef STAP_NEED_GETTIMEOFDAY";
  o->newline() << " _stp_kill_time();";  // Go to a beach.  Drink a beer.
  o->newline() << "#endif";

  // NB: PR13386 points out that _stp_printf may be called from contexts
  // without already active preempt disabling, which breaks various uses
  // of smp_processor_id().  So we temporary block preemption around this
  // whole printing block.  XXX: get_cpu() / put_cpu() may work just as well.
  o->newline() << "preempt_disable();";

  // print per probe point timing/alibi statistics
  o->newline() << "#if defined(STP_TIMING) || defined(STP_ALIBI)";
  o->newline() << "#ifndef STP_STDOUT_NOT_ATTY";
  o->newline() << "_stp_printf(\"----- probe hit report: \\n\");";
  o->newline() << "#endif"; // !defined(STP_STDOUT_NOT_ATTY)
  o->newline() << "for (i = 0; i < ARRAY_SIZE(stap_probes); ++i) {";
  o->newline(1) << "const struct stap_probe *const p = &stap_probes[i];";
  o->newline() << "#ifndef STP_STDOUT_NOT_ATTY";
  o->newline() << "#ifdef STP_ALIBI";
  o->newline() << "int alibi = atomic_read(probe_alibi(i));";
  o->newline() << "if (alibi)";
  o->newline(1) << "_stp_printf (\"%s, (%s), hits: %d,%s, index: %d\\n\",";
  o->newline(2) << "p->pp, p->location, alibi, p->derivation, i);";
  o->newline(-3) << "#endif"; // STP_ALIBI
  o->newline() << "#endif"; // !defined(STP_STDOUT_NOT_ATTY)
  o->newline() << "#ifdef STP_TIMING";
  o->newline() << "if (likely (probe_timing(i))) {"; // NB: check for null stat object
  o->newline() << "#ifndef STP_STDOUT_NOT_ATTY";
  o->newline(1) << "struct stat_data *stats = _stp_stat_get (probe_timing(i), 0);";
  o->newline() << "if (stats->count) {";
  o->newline(1) << "int64_t avg = _stp_div64 (NULL, stats->sum, stats->count);";
  o->newline() << "_stp_printf (\"%s, (%s), hits: %lld, \"";
  o->newline() << "#ifdef STP_TIMING_NSECS";
  o->newline(2) << "\"nsecs\"";
  o->newline(-2) << "#else";
  o->newline(2) << (!session->runtime_usermode_p() ? "\"cycles\"" : "\"nsecs\"");
  o->newline(-2) << "#endif";
  o->newline(2) << "\": %lldmin/%lldavg/%lldmax, variance: %lld,%s, index: %d\\n\",";
  o->newline() << "p->pp, p->location, (long long) stats->count,";
  o->newline() << "(long long) stats->min, (long long) avg, (long long) stats->max,";
  o->newline() << "(long long) stats->variance, p->derivation, i);";
  o->newline(-3) << "}";
  o->newline() << "#endif"; // !defined(STP_STDOUT_NOT_ATTY)
  o->newline() << "preempt_enable_no_resched();";
  o->newline() << "_stp_stat_del (probe_timing(i));";
  o->newline() << "preempt_disable();";
  o->newline(-1) << "}";
  o->newline() << "#endif"; // STP_TIMING
  o->newline(-1) << "}";

  if (!session->runtime_usermode_p())
    {
      o->newline() << "#if !defined(STP_STDOUT_NOT_ATTY) && defined(STP_TIMING)";

      /* module refresh timing report */

      o->newline() << "_stp_printf(\"----- refresh report:\\n\");";
      o->newline() << "if (likely (g_refresh_timing)) {";
      o->newline(1) << "struct stat_data *stats = _stp_stat_get (g_refresh_timing, 0);";
      o->newline() << "if (stats->count) {";
      o->newline(1) << "int64_t avg = _stp_div64 (NULL, stats->sum, stats->count);";
      o->newline() << "_stp_printf (\"hits: %lld, \"";
      o->newline() << "#ifdef STP_TIMING_NSECS";
      o->newline(2) << "\"nsecs\"";
      o->newline(-2) << "#else";
      o->newline(2) << "\"cycles\"";
      o->newline(-2) << "#endif";
      o->newline(2) << "\": %lldmin/%lldavg/%lldmax, variance: %lld\\n\",";
      o->newline() << "(long long) stats->count, (long long) stats->min, ";
      o->newline() <<  "(long long) avg, (long long) stats->max, (long long) stats->variance);";
      o->newline(-3) << "}";
      o->newline() << "preempt_enable_no_resched();";
      o->newline() << "_stp_stat_del (g_refresh_timing);";
      o->newline() << "preempt_disable();";
      o->newline(-1) << "}";

      /* module init timing report */

      o->newline() << "_stp_printf(\"----- module init report:\\n\");";
      o->newline() << "if (likely (g_module_init_timing)) {";
      o->newline(1) << "struct stat_data *stats = _stp_stat_get (g_module_init_timing, 0);";
      o->newline() << "if (stats->count) {";
      o->newline(1) << "int64_t avg = _stp_div64 (NULL, stats->sum, stats->count);";
      o->newline() << "_stp_printf (\"hits: %lld, \"";
      o->newline() << "#ifdef STP_TIMING_NSECS";
      o->newline(2) << "\"nsecs\"";
      o->newline(-2) << "#else";
      o->newline(2) << "\"cycles\"";
      o->newline(-2) << "#endif";
      o->newline(2) << "\": %lldmin/%lldavg/%lldmax, variance: %lld\\n\",";
      o->newline() << "(long long) stats->count, (long long) stats->min, ";
      o->newline() <<  "(long long) avg, (long long) stats->max, (long long) stats->variance);";
      o->newline(-3) << "}";
      o->newline() << "preempt_enable_no_resched();";
      o->newline() << "_stp_stat_del (g_module_init_timing);";
      o->newline() << "preempt_disable();";
      o->newline(-1) << "}";

      o->newline() << "#elif defined(STP_TIMING)"; // STP_TIMING

      o->newline() << "if (likely (g_refresh_timing)) {";
      o->newline(1) << "preempt_enable_no_resched();";
      o->newline() << "_stp_stat_del (g_refresh_timing);";
      o->newline() << "preempt_disable();";
      o->newline(-1) << "}";

      o->newline() << "if (likely (g_module_init_timing)) {";
      o->newline(1) << "preempt_enable_no_resched();";
      o->newline() << "_stp_stat_del (g_module_init_timing);";
      o->newline() << "preempt_disable();";
      o->newline(-1) << "}";

      o->newline() << "#endif"; // STP_TIMING
    }

  o->newline() << "_stp_print_flush();";
  o->newline() << "#endif";

  //print lock contentions if non-zero
  o->newline() << "#ifdef STP_TIMING";
  o->newline() << "{";
  o->newline(1) << "int ctr;";
  for (unsigned i=0; i<session->globals.size(); i++)
    {
      string orig_vn = session->globals[i]->name;
      string vn = c_globalname (orig_vn);
      o->newline() << "ctr = atomic_read (global_contended(" << vn << "));";
      o->newline() << "if (ctr) _stp_printf(\"'%s' lock contention occurred %d times\\n\", "
	           << lex_cast_qstring(orig_vn) << ", ctr);";
    }
  o->newline(-1) << "}";
  o->newline() << "_stp_print_flush();";
  o->newline () << "#endif";

  // print final error/skipped counts if non-zero
  o->newline() << "if (atomic_read (skipped_count()) || "
               << "atomic_read (error_count()) || "
               << "atomic_read (skipped_count_reentrant())) {"; // PR9967
  o->newline(1) << "_stp_warn (\"Number of errors: %d, "
                << "skipped probes: %d\\n\", "
                << "(int) atomic_read (error_count()), "
                << "(int) atomic_read (skipped_count()));";
  o->newline() << "#ifdef STP_TIMING";
  o->newline() << "{";
  o->newline(1) << "int ctr;";
  for (unsigned i=0; i<session->globals.size(); i++)
    {
      string orig_vn = session->globals[i]->name;
      string vn = c_globalname (orig_vn);
      o->newline() << "ctr = atomic_read (global_skipped(" << vn << "));";
      o->newline() << "if (ctr) _stp_warn (\"Skipped due to global '%s' lock timeout: %d\\n\", "
                   << lex_cast_qstring(orig_vn) << ", ctr);";
    }
  o->newline() << "ctr = atomic_read (skipped_count_lowstack());";
  o->newline() << "if (ctr) _stp_warn (\"Skipped due to low stack: %d\\n\", ctr);";
  o->newline() << "ctr = atomic_read (skipped_count_reentrant());";
  o->newline() << "if (ctr) _stp_warn (\"Skipped due to reentrancy: %d\\n\", ctr);";
  o->newline() << "ctr = atomic_read (skipped_count_uprobe_reg());";
  o->newline() << "if (ctr) _stp_warn (\"Skipped due to uprobe register failure: %d\\n\", ctr);";
  o->newline() << "ctr = atomic_read (skipped_count_uprobe_unreg());";
  o->newline() << "if (ctr) _stp_warn (\"Skipped due to uprobe unregister failure: %d\\n\", ctr);";
  o->newline(-1) << "}";
  o->newline () << "#endif";
  o->newline() << "_stp_print_flush();";
  o->newline(-1) << "}";

  // NB: PR13386 needs to restore preemption-blocking counts
  o->newline() << "preempt_enable_no_resched();";

  // In dyninst mode, now we're done with the contexts, transport, everything!
  if (session->runtime_usermode_p())
    {
      o->newline() << "_stp_runtime_entryfn_put_context(c);";
      o->newline() << "_stp_dyninst_transport_shutdown();";
      o->newline() << "_stp_runtime_contexts_free();";
    }

  o->newline(-1) << "}\n";
}

struct max_action_info: public functioncall_traversing_visitor
{
  max_action_info(systemtap_session& s): sess(s), statement_count(0) {}

  systemtap_session& sess;
  unsigned statement_count;
  static const unsigned max_statement_count = ~0;

  void add_stmt_count (unsigned val)
    {
      statement_count = (statement_count > max_statement_count - val) ? max_statement_count : statement_count + val;
    }
  void add_max_stmt_count () { statement_count = max_statement_count; }
  bool statement_count_finite() { return statement_count < max_statement_count; }

  void visit_for_loop (for_loop*) { add_max_stmt_count(); }
  void visit_foreach_loop (foreach_loop*) { add_max_stmt_count(); }
  void visit_expr_statement (expr_statement *stmt)
    {
      add_stmt_count(1);
      traversing_visitor::visit_expr_statement(stmt); // which will trigger visit_functioncall, if applicable
    }
  void visit_if_statement (if_statement *stmt)
    {
      add_stmt_count(1);
      stmt->condition->visit(this);

      // Create new visitors for the two forks.  Copy the nested[] set
      // to prevent infinite recursion for a   function f () { if (a) f() }
      max_action_info tmp_visitor_then (*this);
      max_action_info tmp_visitor_else (*this);
      stmt->thenblock->visit(& tmp_visitor_then);
      if (stmt->elseblock)
        {
          stmt->elseblock->visit(& tmp_visitor_else);
        }

      // Simply overwrite our copy of statement_count, since these
      // visitor copies already included our starting count.
      statement_count = max(tmp_visitor_then.statement_count, tmp_visitor_else.statement_count);
    }

  void note_recursive_functioncall (functioncall *) { add_max_stmt_count(); }

  void visit_null_statement (null_statement *) { add_stmt_count(1); }
  void visit_return_statement (return_statement *) { add_stmt_count(1); }
  void visit_delete_statement (delete_statement *) { add_stmt_count(1); }
  void visit_next_statement (next_statement *) { add_stmt_count(1); }
  void visit_break_statement (break_statement *) { add_stmt_count(1); }
  void visit_continue_statement (continue_statement *) { add_stmt_count(1); }
};

void
c_tmpcounter::emit_function (functiondecl* fd)
{
  this->current_probe = 0;
  this->current_function = fd;
  this->tmpvar_counter = 0;
  this->action_counter = 0;
  this->already_checked_action_count = false;
  declared_vars.clear();

  translator_output *o = parent->o;

  // indent the dummy output as if we were already in a block
  this->o->indent (1);

  bool funcname_shortened;
  string funcname = c_funcname (fd->name, funcname_shortened);
  if (funcname_shortened)
    o->newline() << "/* " << fd->name << " */";
  o->newline() << "struct " << funcname << "_locals {";
  o->indent(1);

  for (unsigned j=0; j<fd->locals.size(); j++)
    {
      vardecl* v = fd->locals[j];
      try
	{
	  if (fd->mangle_oldstyle)
	    {
	      // PR14524: retain old way of referring to the locals
	      o->newline() << "union { "
			   << c_typename (v->type) << " "
			   << c_localname (v->name) << "; "
			   << c_typename (v->type) << " "
			   << c_localname (v->name, true) << "; };";
	    }
	  else
	    {
	      o->newline() << c_typename (v->type) << " "
			   << c_localname (v->name) << ";";
	    }
	} catch (const semantic_error& e) {
	  semantic_error e2 (e);
	  if (e2.tok1 == 0) e2.tok1 = v->tok;
	  throw e2;
	}
    }

  for (unsigned j=0; j<fd->formal_args.size(); j++)
    {
      vardecl* v = fd->formal_args[j];
      try
	{
	  v->char_ptr_arg = (is_unmodified_string_fnarg (session, fd, v));

	  if (v->char_ptr_arg && session->verbose > 2)
	    clog << _F("variable %s for function %s will be passed by reference (char *)",
		       v->name.to_string().c_str(),
		       fd->unmangled_name.to_string().c_str()) << endl;

	  if (fd->mangle_oldstyle)
	    {
	      // PR14524: retain old way of referring to the locals
	      o->newline() << "union { "
			   << (v->char_ptr_arg ? "const char *" : c_typename (v->type))
			   << " " << c_localname (v->name) << "; "
			   << (v->char_ptr_arg ? "const char *" : c_typename (v->type))
			   << " " << c_localname (v->name, true) << "; };";
	    }
	  else
	    {
	      o->newline() << (v->char_ptr_arg ? "const char *" : c_typename (v->type))
			   << " " << c_localname (v->name) << ";";
	    }
	} catch (const semantic_error& e) {
	  semantic_error e2 (e);
	  if (e2.tok1 == 0) e2.tok1 = v->tok;
	  throw e2;
	}
    }

  fd->body->visit (this);

  if (fd->type == pe_unknown)
    o->newline() << "/* no return value */";
  else
    {
      bool as_charp = !session->unoptimized && fd->type == pe_string;
      if (as_charp && session->verbose > 2)
	clog << _F("return value for function %s will be passed by reference (char *)",
		   fd->unmangled_name.to_string().c_str()) << endl;
      o->newline() << (as_charp ? "char *" : c_typename (fd->type))
		   << " __retvalue;";
    }
  o->newline(-1) << "} " << c_funcname (fd->name) << ";";

  // finish dummy indentation
  this->o->indent (-1);
  this->o->assert_0_indent ();

  declared_vars.clear();
  this->current_function = 0;
  this->already_checked_action_count = false;
}

void
c_unparser::emit_function (functiondecl* v)
{
  this->current_probe = 0;
  this->current_function = v;
  this->tmpvar_counter = 0;
  this->action_counter = 0;
  this->already_checked_action_count = false;

  bool funcname_shortened;
  string funcname = c_funcname (v->name, funcname_shortened);
  if (funcname_shortened)
    o->newline() << "/* " << v->name << " */";
  o->newline() << "static void " << funcname
            << " (struct context* __restrict__ c) {";
  o->indent(1);

  o->newline() << "__label__ deref_fault;";
  o->newline() << "__label__ out;";
  o->newline()
    << "struct " << c_funcname (v->name) << "_locals * "
    << " __restrict__ l = "
    << "& c->locals[c->nesting+1]." << c_funcname (v->name) // NB: nesting+1
    << ";";
  o->newline() << "(void) l;"; // make sure "l" is marked used
  o->newline() << "#define CONTEXT c";
  o->newline() << "#define THIS l";
  for (unsigned i = 0; i < v->formal_args.size(); i++) {
    o->newline() << c_arg_define(v->formal_args[i]->name); // #define STAP_ARG_foo ...
  }
  for (unsigned i = 0; i < v->locals.size(); i++) {
    o->newline() << c_arg_define(v->locals[i]->name); // #define STAP_ARG_foo ...
  }
  // define STAP_RETVALUE only if the function is non-void
  if (v->type != pe_unknown)
    o->newline() << "#define STAP_RETVALUE THIS->__retvalue";

  // set this, in case embedded-c code sets last_error but doesn't otherwise identify itself
  if (v->tok)
    o->newline() << "c->last_stmt = " << lex_cast_qstring(*v->tok) << ";";

  // check/increment nesting level
  // NB: incoming c->nesting level will be -1 (if we're called directly from a probe),
  // or 0...N (if we're called from another function).  Incoming parameters are already
  // stored in c->locals[c->nesting+1].  See also ::emit_common_header() for more.

  o->newline() << "if (unlikely (c->nesting+1 >= MAXNESTING)) {";
  o->newline(1) << "c->last_error = ";
  o->line() << STAP_T_02;
  o->newline() << "return;";
  o->newline(-1) << "} else {";
  o->newline(1) << "c->nesting ++;";
  o->newline(-1) << "}";

  // initialize runtime overloading flag
  o->newline() << "c->next = 0;";
  o->newline() << "#define STAP_NEXT do { c->next = 1; goto out; } while(0)";

  // initialize locals
  // XXX: optimization: use memset instead
  for (unsigned i=0; i<v->locals.size(); i++)
    {
      if (v->locals[i]->index_types.size() > 0) // array?
	throw SEMANTIC_ERROR (_("array locals not supported, missing global declaration?"),
                              v->locals[i]->tok);

      o->newline() << getvar (v->locals[i]).init();
    }

  // initialize return value, if any
  if (v->type != pe_unknown)
    {
      var retvalue = var(this, true, v->type, "__retvalue", false); // not mangled
      o->newline() << retvalue.init();
    }

  switch (v->type)
    {
    case pe_long:
      o->newline() << "#define STAP_RETURN(v) do { STAP_RETVALUE = (int64_t) (v); " 
        "goto out; } while(0)";
      break;

    case pe_string:
      o->newline() <<
        "#define STAP_RETURN(v) do { strlcpy(STAP_RETVALUE, (v), MAXSTRINGLEN); "
        "goto out; } while(0)";
      break;

    default:
      o->newline() << "#define STAP_RETURN() do { goto out; } while(0)";
      break;
    }

  o->newline() << "#define STAP_PRINTF(fmt, ...) do { _stp_printf(fmt, ##__VA_ARGS__); } while (0)";
  o->newline() << "#define STAP_ERROR(...) do { snprintf(CONTEXT->error_buffer, MAXSTRINGLEN, __VA_ARGS__); CONTEXT->last_error = CONTEXT->error_buffer; goto out; } while (0)";
  o->newline() << "#define return goto out"; // redirect embedded-C return

  max_action_info mai (*session);
  v->body->visit (&mai);

  if (mai.statement_count_finite() && !session->suppress_time_limits
      && !session->unoptimized) // this is a finite-statement-count function
    {
      o->newline() << "if (c->actionremaining < " << mai.statement_count
                   << ") { c->last_error = " << STAP_T_04 << "goto out; }";
      this->already_checked_action_count = true;
    }

  v->body->visit (this);
  o->newline() << "#undef return";
  o->newline() << "#undef STAP_PRINTF";
  o->newline() << "#undef STAP_ERROR";
  o->newline() << "#undef STAP_RETURN";

  this->current_function = 0;

  record_actions(0, v->body->tok, true);

  o->newline(-1) << "deref_fault: __attribute__((unused));";
  o->newline(0) << "out: __attribute__((unused));";

  // Function prologue: this is why we redirect the "return" above.
  // Decrement nesting level.
  o->newline(1) << "c->nesting --;";

  o->newline() << "#undef CONTEXT";
  o->newline() << "#undef THIS";
  o->newline() << "#undef STAP_NEXT";
  for (unsigned i = 0; i < v->formal_args.size(); i++) {
    o->newline() << c_arg_undef(v->formal_args[i]->name); // #undef STAP_ARG_foo
  }
  for (unsigned i = 0; i < v->locals.size(); i++) {
    o->newline() << c_arg_undef(v->locals[i]->name); // #undef STAP_ARG_foo
  }
  o->newline() << "#undef STAP_RETVALUE";
  o->newline(-1) << "}\n";

  this->current_function = 0;
  this->already_checked_action_count = false;
}

void
c_tmpcounter::emit_probe (derived_probe* dp)
{
  this->current_function = 0;
  this->current_probe = dp;
  this->tmpvar_counter = 0;
  this->action_counter = 0;
  this->already_checked_action_count = false;
  declared_vars.clear();
  pushdown_lock.clear();
  pushdown_unlock.clear();

  if (get_probe_dupe (dp) == NULL)
    {
      translator_output *o = parent->o;

      // indent the dummy output as if we were already in a block
      this->o->indent (1);

      o->newline() << "struct " << dp->name() << "_locals {";
      o->indent(1);
      for (unsigned j=0; j<dp->locals.size(); j++)
	{
	  vardecl* v = dp->locals[j];
	  try
	    {
	      o->newline() << c_typename (v->type) << " "
			   << c_localname (v->name) << ";";
	    } catch (const semantic_error& e) {
	    semantic_error e2 (e);
	    if (e2.tok1 == 0) e2.tok1 = v->tok;
	    throw e2;
	  }
	}

      dp->body->visit (this);

      // finish by visiting conditions of affected probes to match
      // c_unparser::emit_probe()
      if (!dp->probes_with_affected_conditions.empty())
	{
	  for (set<derived_probe*>::const_iterator
		it  = dp->probes_with_affected_conditions.begin();
		it != dp->probes_with_affected_conditions.end(); ++it)
	    (*it)->sole_location()->condition->visit(this);
	}

      o->newline(-1) << "} " << dp->name() << ";";

      // finish dummy indentation
      this->o->indent (-1);
      this->o->assert_0_indent ();
    }

  declared_vars.clear();
  pushdown_lock.clear();
  pushdown_unlock.clear();
  this->current_probe = 0;
  this->already_checked_action_count = false;
}

#define DUPMETHOD_CALL 0
#define DUPMETHOD_ALIAS 0
#define DUPMETHOD_RENAME 1


void
c_unparser::emit_probe (derived_probe* v)
{
  this->current_function = 0;
  this->current_probe = v;
  this->tmpvar_counter = 0;
  this->action_counter = 0;
  this->already_checked_action_count = false;

  // If we about to emit a probe that is exactly the same as another
  // probe previously emitted, make the second probe just call the
  // first one.
  probe *dupe = get_probe_dupe (v);
  if (dupe != NULL)
    {
      // NB: Elision of context variable structs is a separate
      // operation which has already taken place by now.
      if (session->verbose > 1)
        clog << _F("%s elided, duplicates %s\n",
		   v->name().c_str(), dupe->name().c_str());

#if DUPMETHOD_CALL
      // This one emits a direct call to the first copy.
      o->newline();
      o->newline() << "static void " << v->name() << " (struct context * __restrict__ c) ";
      o->newline() << "{ " << dupe->name() << " (c); }";
#elif DUPMETHOD_ALIAS
      // This one defines a function alias, arranging gcc to emit
      // several equivalent symbols for the same function body.
      // For some reason, on gcc 4.1, this is twice as slow as
      // the CALL option.
      o->newline();
      o->newline() << "static void " << v->name() << " (struct context * __restrict__ c) ";
      o->line() << "__attribute__ ((alias (\"" << dupe->name() << "\")));";
#elif DUPMETHOD_RENAME
      // This one is sneaky.  It emits nothing for duplicate probe
      // handlers.  It instead redirects subsequent references to the
      // probe handler function to the first copy, *by name*.
      v->id = dupe->id;
#else
#error "Unknown duplicate elimination method"
#endif
    }
  else // This probe is unique.  Remember it and output it.
    {
      o->newline();
      o->newline() << "static void " << v->name() << " (struct context * __restrict__ c) ";
      o->line () << "{";
      o->indent (1);

      o->newline() << "__label__ deref_fault;";
      o->newline() << "__label__ out;";

      // emit static read/write lock decls for global variables
      if (v->needs_global_locks ())
        {
          varuse_collecting_visitor vut(*session);
          v->body->visit (& vut);

          // PR26296
          // ... so we know the probe handler body will need to lock 
          pushdown_lock.insert(v->body);

          // also visit any probe conditions which this current probe might
          // evaluate so that read locks are emitted as necessary: e.g. suppose
          //    probe X if (a || b) {...} probe Y {a = ...} probe Z {b = ...}
          // then Y and Z will already write-lock a and b respectively, but they
          // also need a read-lock on b and a respectively, since they will read
          // them when evaluating the new cond_enabled field (see c_unparser::
          // emit_probe_condition_update()).
          for (set<derived_probe*>::const_iterator
                it  = v->probes_with_affected_conditions.begin();
                it != v->probes_with_affected_conditions.end(); ++it)
            {
              assert((*it)->sole_location()->condition != NULL);
              (*it)->sole_location()->condition->visit (& vut);
            }

          // If there are no probe conditions affected by this probe, then emit
          // the unlock somewhere in the normal handler.  Otherwise, we need the
          // unlock done in a fixed location, AFTER all the condition expressions.
          // PR26296
          if (v->probes_with_affected_conditions.size() == 0)
            pushdown_unlock.insert(v->body);
          
          emit_lock_decls (vut);
        }

      // initialize frame pointer
      o->newline() << "struct " << v->name() << "_locals * __restrict__ l = "
                   << "& c->probe_locals." << v->name() << ";";
      o->newline() << "(void) l;"; // make sure "l" is marked used

      // Emit runtime safety net for unprivileged mode.
      // NB: In usermode, the system restricts our privilege for us.
      if (!session->runtime_usermode_p())
        v->emit_privilege_assertion (o);

      // emit probe local initialization block

      v->emit_probe_local_init(*this->session, o);

      // PR26296: not so early!
#if 0
      // emit all read/write locks for global variables
      if (v->needs_global_locks ())
        emit_lock ();
#endif
      
      // initialize locals
      for (unsigned j=0; j<v->locals.size(); j++)
        {
	  if (v->locals[j]->synthetic)
            continue;
	  if (v->locals[j]->index_types.size() > 0) // array?
            throw SEMANTIC_ERROR (_("array locals not supported, missing global declaration?"),
                                  v->locals[j]->tok);
	  else if (v->locals[j]->type == pe_long)
	    o->newline() << "l->" << c_localname (v->locals[j]->name)
			 << " = 0;";
	  else if (v->locals[j]->type == pe_string)
	    o->newline() << "l->" << c_localname (v->locals[j]->name)
			 << "[0] = '\\0';";
	  else
	    throw SEMANTIC_ERROR (_("unsupported local variable type"),
				  v->locals[j]->tok);
        }

      v->initialize_probe_context_vars (o);

      max_action_info mai (*session);
      v->body->visit (&mai);
      if (session->verbose > 1)
        clog << _F("%d statements for probe %s", mai.statement_count,
		   v->name().c_str()) << endl;

      if (mai.statement_count_finite() && !session->suppress_time_limits
          && !session->unoptimized) // this is a finite-statement-count probe
        {
          o->newline() << "if (c->actionremaining < " << mai.statement_count 
                       << ") { c->last_error = " << STAP_T_04 << " goto out; }";
          this->already_checked_action_count = true;
        }

      v->body->visit (this);

      record_actions(0, v->body->tok, true);

      o->newline(-1) << "deref_fault: __attribute__((unused));";
      o->newline(0) << "out:";
      // NB: no need to uninitialize locals, except if arrays/stats can
      // someday be local

      o->indent(1);

      if (!v->probes_with_affected_conditions.empty())
        {
          // PR26296
          // emit all read/write locks for global variables ... if somehow still not done by now
          // emit a local out: label, for error catching in these condition exprs
          o->newline() << "{";
          o->newline(1) << "__label__ out, deref_fault;";
          if (v->needs_global_locks ())
            emit_lock ();

          for (set<derived_probe*>::const_iterator
                 it  = v->probes_with_affected_conditions.begin();
               it != v->probes_with_affected_conditions.end(); ++it)
            {
              emit_probe_condition_update(*it);
            }
          o->newline(-1) << "deref_fault: __attribute__((unused));";
          o->newline() << "out: __attribute__((unused));";
          o->newline() << "}";
        }

      // PR26296
      // Emit an unlock at the end, even if it was pushed down into some
      // probe handler statement.  (It'll be conditional on c->locked
      // anyway.)
      if (v->needs_global_locks ())
	emit_unlock ();

      // XXX: do this flush only if the body included a
      // print/printf/etc. routine!
      o->newline() << "_stp_print_flush();";
      o->newline(-1) << "}\n";
    }

  this->current_probe = 0;
  this->already_checked_action_count = false;
}

// Updates the cond_enabled field and sets need_module_refresh if it was
// changed.
void
c_unparser::emit_probe_condition_update(derived_probe* v)
{
  unsigned i = v->session_index;
  assert(i < session->probes.size());

  expression *cond = v->sole_location()->condition;
  assert(cond);

  // NB: the caller guarantees that global variables are already locked
  // (if necessary) by this point.  It's wrong to judge necessity by
  // v->needs_global_locks(), because that's the wrong v (the OTHER probe
  // that is conditional on some global, not THIS probe that modifies the
  // global, and thus recomputes the conditions).
  
  string cond_enabled = "stap_probes[" + lex_cast(i) + "].cond_enabled";

  // Concurrency note: we're safe modifying cond_enabled here since we emit
  // locks not only for globals we write to, but also for globals read in other
  // probes' whose conditions we visit below (see in c_unparser::emit_probe). So
  // we can be assured we're the only ones modifying cond_enabled.

  o->newline() << "if (" << cond_enabled << " != ";
  o->line() << "!!"; // NB: turn general integer into boolean 1 or 0
  v->sole_location()->condition->visit(this);
  o->line() << ") {";
  o->newline(1) << cond_enabled << " ^= 1;"; // toggle it 

  // don't bother refreshing if on-the-fly not supported
  if (!session->runtime_usermode_p()
      && v->group && v->group->otf_supported(*session))
    o->newline() << "atomic_set(&need_module_refresh, 1);";

  o->newline(-1) << "}";
}

void
c_unparser::emit_lock_decls(const varuse_collecting_visitor& vut)
{
  unsigned numvars = 0;

  if (session->verbose > 1)
    clog << "probe " << current_probe->session_index << " "
            "('" << *current_probe->sole_location() << "') locks";

  // We can only make this static in kernel mode.  In stapdyn mode,
  // the globals and their locks are in shared memory.
  o->newline();
  if (!session->runtime_usermode_p())
    o->line() << "static ";
  o->line() << "const struct stp_probe_lock locks[] = {";
  o->indent(1);

  for (unsigned i = 0; i < session->globals.size(); i++)
    {
      vardecl* v = session->globals[i];
      bool read_p = vut.read.count(v) > 0;
      bool write_p = vut.written.count(v) > 0;
      if (!read_p && !write_p) continue;

      bool written_p;
      if (v->type == pe_stats) // read and write locks are flipped
        // Specifically, a "<<<" to a stats object is considered a
        // "shared-lock" operation, since it's implicitly done
        // per-cpu.  But a "@op(x)" extraction is an "exclusive-lock"
        // one, as is a (sorted or unsorted) foreach, so those cases
        // are excluded by the w & !r condition below.
        {
          if (write_p && !read_p) { read_p = true; write_p = false; }
          else if (read_p && !write_p) { read_p = false; write_p = true; }
          written_p = vcv_needs_global_locks.read.count(v) > 0;
        }
      else
        written_p = vcv_needs_global_locks.written.count(v) > 0;

      // We don't need to read lock "read-mostly" global variables.  A
      // "read-mostly" global variable is only written to within
      // probes that don't need global variable locking (such as
      // begin/end probes).  If vcv_needs_global_locks doesn't mark
      // the global as written to, then we don't have to lock it
      // here to read it safely.
      if (!written_p && read_p && !write_p)
        continue;

      o->newline() << "{";
      o->newline(1) << ".lock = global_lock(" + c_globalname(v->name) + "),";
      o->newline() << ".write_p = " << (write_p ? 1 : 0) << ",";
      o->newline() << "#ifdef STP_TIMING";
      o->newline() << ".skipped = global_skipped(" << c_globalname (v->name) << "),";
      o->newline() << ".contention = global_contended(" << c_globalname (v->name) << "),";
      o->newline() << "#endif";
      o->newline(-1) << "},";

      numvars ++;
      if (session->verbose > 1)
        clog << " " << v->name << "[" << (read_p ? "r" : "")
             << (write_p ? "w" : "")  << "]";
    }

  o->newline(-1) << "};";

  if (session->verbose > 1)
    {
      if (!numvars)
        clog << _(" nothing");
      clog << endl;
    }
}


// PR26296: emit locking ops just before statements that involve
// reads/writes to script globals.

void
c_unparser::emit_lock()
{
  if (this->session->verbose > 3)
    clog << "emit lock" << endl;
  
  // Emit code to lock, if we haven't already done it during this
  // probe handler run.
  o->newline() << "if (c->locked == 0) {";
  o->newline(1) << "if (!stp_lock_probe(locks, ARRAY_SIZE(locks)))";
  o->newline(1) << "goto out;"; // bypass try/catch etc.
  o->newline(-1) << "else";
  o->newline(1) << "c->locked = 1;";
  o->newline(-2) << "} else if (unlikely(c->locked == 2)) {";
  o->newline(1) << "_stp_error(\"invalid lock state\");";
  o->newline(-1) << "}";
}
    

// The given statement was found to have no lockworthy constituents.
// But if given statement was still listed for pushdown, then it was 
// by logic error, so kvetch and emit a token lock and/or unlock.
// Eventually this could become an assertion error.
void
c_unparser::locks_not_needed_argh (statement *p)
{
  if (!pushdown_lock_p(p) && !pushdown_unlock_p(p))
    return; // no problem then!
      
  if (this->session->verbose > 2)
    clog << "Oops, unexpected"
         << (pushdown_lock_p(p) ? " lock" : "")
         << (pushdown_unlock_p(p) ? " unlock" : "")
         << " pushdown for statement " << *p->tok << endl;

  if (pushdown_lock_p(p))
    emit_lock();
  if (pushdown_unlock_p(p))
    emit_unlock();
}


// Check whether this statement reads or writes any globals.
// Those that do not, can allow lock or unlock operations to
// slide forward or backward over them (respectively).
bool
c_unparser::locks_needed_p(visitable *s) // statement OR expression
{
  if (! current_probe) // called from function context?
    return false;

  if (! current_probe->needs_global_locks ())
    return false;

  // NB: In compatible mode, return TRUE all the time, so that
  // locks/unlocks are emitted early/late always.
  if (strverscmp(this->session->compatible.c_str(), "4.3") <= 0)
    return true;
  
  varuse_collecting_visitor vut(*session);
  s->visit (& vut);
  bool lock_me = false;
  for (unsigned i = 0; i < session->globals.size(); i++)
    {
      vardecl* v = session->globals[i];
      bool read_p = vut.read.count(v) > 0;
      bool write_p = vut.written.count(v) > 0;
      lock_me = read_p || write_p;
      if (lock_me) break; // first hit is enough
    }

  return lock_me;
}


void
c_unparser::emit_unlock()
{
  if (this->session->verbose > 3)
    clog << "emit unlock" << endl;
  
  o->newline() << "if (c->locked == 1) {";
  o->newline(1) << "stp_unlock_probe(locks, ARRAY_SIZE(locks));";
  o->newline() << "c->locked = 2;"; // NB: 2 so it won't re-lock
  o->newline(-1) << "}";
}


void
c_unparser::collect_map_index_types(vector<vardecl *> const & vars,
				    set< pair<vector<exp_type>, exp_type> > & types)
{
  for (unsigned i = 0; i < vars.size(); ++i)
    {
      vardecl *v = vars[i];
      if (v->arity > 0)
	{
	  types.insert(make_pair(v->index_types, v->type));
	}
    }
}

string
mapvar::value_typename(exp_type e)
{
  switch (e)
    {
    case pe_long:
      return "INT64";
    case pe_string:
      return "STRING";
    case pe_stats:
      return "STAT";
    default:
      throw SEMANTIC_ERROR(_("array type is neither string nor long"));
    }
}

string
mapvar::key_typename(exp_type e)
{
  switch (e)
    {
    case pe_long:
      return "INT64";
    case pe_string:
      return "STRING";
    default:
      throw SEMANTIC_ERROR(_("array key is neither string nor long"));
    }
}

string
mapvar::shortname(exp_type e)
{
  switch (e)
    {
    case pe_long:
      return "i";
    case pe_string:
      return "s";
    default:
      throw SEMANTIC_ERROR(_("array type is neither string nor long"));
    }
}

string
c_unparser::map_keytypes(vardecl* v)
{
  string result;
  vector<exp_type> types = v->index_types;
  types.push_back (v->type);
  for (unsigned i = 0; i < types.size(); ++i)
    {
      switch (types[i])
        {
        case pe_long:
          result += 'i';
          break;
        case pe_string:
          result += 's';
          break;
        case pe_stats:
          result += 'x';
          break;
        default:
          throw SEMANTIC_ERROR(_("unknown type of map"));
          break;
        }
    }
  return result;
}

void
c_unparser::emit_map_type_instantiations ()
{
  set< pair<vector<exp_type>, exp_type> > types;

  collect_map_index_types(session->globals, types);

  for (unsigned i = 0; i < session->probes.size(); ++i)
    collect_map_index_types(session->probes[i]->locals, types);

  for (map<string,functiondecl*>::iterator it = session->functions.begin(); it != session->functions.end(); it++)
    collect_map_index_types(it->second->locals, types);

  if (!types.empty())
    o->newline() << "#include \"alloc.c\"";

  for (set< pair<vector<exp_type>, exp_type> >::const_iterator i = types.begin();
       i != types.end(); ++i)
    {
      o->newline() << "#define VALUE_TYPE " << mapvar::value_typename(i->second);
      for (unsigned j = 0; j < i->first.size(); ++j)
	{
	  string ktype = mapvar::key_typename(i->first.at(j));
	  o->newline() << "#define KEY" << (j+1) << "_TYPE " << ktype;
	}
      /* For statistics, flag map-gen to pull in nested pmap-gen too.  */
      if (i->second == pe_stats)
	o->newline() << "#define MAP_DO_PMAP 1";
      o->newline() << "#include \"map-gen.c\"";
      o->newline() << "#undef MAP_DO_PMAP";
      o->newline() << "#undef VALUE_TYPE";
      for (unsigned j = 0; j < i->first.size(); ++j)
	{
	  o->newline() << "#undef KEY" << (j+1) << "_TYPE";
	}
    }

  if (!types.empty())
    o->newline() << "#include \"map.c\"";

};


string
c_unparser::c_typename (exp_type e)
{
  switch (e)
    {
    case pe_long: return string("int64_t");
    case pe_string: return string("string_t");
    case pe_stats: return string("Stat");
    case pe_unknown:
    default:
      throw SEMANTIC_ERROR (_("cannot expand unknown type"));
    }
}


// XXX: the below is just for the sake of example; it's possibly
// better to expose the hash function in hash.cxx

// unsigned int
// do_hash (const char *e)
// {
//   unsigned int foo = 0;
//   while (*e) {
//     foo *= 101; foo += *e; e++;
//   }
//   return foo;
// }


string
c_unparser::c_localname (const string& e, bool mangle_oldstyle)
{
  if (strverscmp(session->compatible.c_str(), "1.8") < 0 || mangle_oldstyle)
    return e; // old mangling behaviour
  else
// XXX: we may wish to invent and/or test other mangling schemes, e.g.:
//  return "l_" + e + "_" + lex_cast(do_hash(e.c_str()));
    return "l_" + e;
}


string
c_unparser::c_globalname (const string& e)
{
  // XXX uncomment to test custom mangling:
  // return "s_" + e + "_" + lex_cast(do_hash(e.c_str()));
  return "s_" + e;
}


string
c_unparser::c_funcname (const string& e, bool& funcname_shortened)
{
  const string function_prefix = "function_";
  // This matches MAX_NAME_LEN in linux objtool/elf.c used by kbuild
  // The kernel objtool used by kbuild has a hardcoded function length limit
  const unsigned max_name_len = 128;
  // Add padding to allow for gcc function attribute suffixes like constprop or cold
  const unsigned func_attr_suffix_padding = 32;
  // XXX uncomment to test custom mangling:
  // return function_prefix + e + "_" + lex_cast(do_hash(e.c_str()));

  if (e.length() > max_name_len - function_prefix.length() - func_attr_suffix_padding)
    {
      long function_index = 0;
      for (map<string,functiondecl*>::iterator it = session->functions.begin();
          it != session->functions.end(); it++)
        {
          if (it->first == e)
            {
              funcname_shortened = true;
              return function_prefix + lex_cast (function_index);
            }
          function_index += 1;
        }
        throw SEMANTIC_ERROR (_("unresolved symbol: ") + e); // should not happen
    }
  else
    {
      funcname_shortened = false;
      return function_prefix + e;
    }
}


string
c_unparser::c_funcname (const string& e)
{
  bool funcname_shortened;
  return c_funcname (e, funcname_shortened);
}


string
c_unparser::c_arg_define (const string& e)
{
  return "#define STAP_ARG_" + e + " THIS->" + c_localname(e);
}


string
c_unparser::c_arg_undef (const string& e)
{
  return "#undef STAP_ARG_" + e;
}

void
c_unparser::c_global_write_def(vardecl* v)
{
  if (v->arity > 0)
    {
      o->newline() << "#define STAP_GLOBAL_SET_" << v->unmangled_name << "(...) "
                   << "({int rc = _stp_map_set_" << map_keytypes(v)
                   << "(global(" << c_globalname(v->name) << "), __VA_ARGS__); "
                   << "if (unlikely(rc)) { c->last_error = " << STAP_T_01
                   << lex_cast(v->maxsize > 0 ? "size limit (" + lex_cast(v->maxsize)
                      + ")" : "MAXMAPENTRIES") + "\"; goto out; } rc;})";
    }
  else
    {
      o->newline() << "#define STAP_GLOBAL_SET_" << v->unmangled_name << "(val) ";
      if (v->type == pe_string)
          o->line() << "strlcpy(global(" << c_globalname(v->name) << "), val, MAXSTRINGLEN)";
      else if (v->type == pe_long)
          o->line() << "global_set(" << c_globalname(v->name) << ", val)";
    }
}

void
c_unparser::c_global_read_def(vardecl* v)
{
  if (v->arity > 0)
    {
      o->newline() << "#define STAP_GLOBAL_GET_" << v->unmangled_name << "(...) "
                   << "_stp_map_get_" << map_keytypes(v)
                   << "(global(" << c_globalname(v->name) << "), __VA_ARGS__)";
    }
  else
    {
      o->newline() << "#define STAP_GLOBAL_GET_" << v->unmangled_name << "() "
                   << "global(" << c_globalname(v->name) << ")";
    }
}

void
c_unparser::c_global_write_undef(vardecl* v)
{
  o->newline() << "#undef STAP_GLOBAL_SET_" << v->unmangled_name;
}

void
c_unparser::c_global_read_undef(vardecl* v)
{
  o->newline() << "#undef STAP_GLOBAL_GET_" << v->unmangled_name;
}

void
c_unparser::c_assign (var& lvalue, const string& rvalue, const token *tok)
{
  switch (lvalue.type())
    {
    case pe_string:
      c_strcpy(lvalue.value(), rvalue);
      break;
    case pe_long:
      o->newline() << lvalue << " = " << rvalue << ";";
      break;
    default:
      throw SEMANTIC_ERROR (_("unknown lvalue type in assignment"), tok);
    }
}


void
c_unparser::c_assign(tmpvar& t, expression *e, const char* msg)
{
  // We don't really need a tmpvar if the expression is a literal.
  // (NB: determined by the expression itself, not tok->type!)

  if (dynamic_cast<literal*>(e))
    {
      // We need to use the visitors to get proper C values, like
      // "((int64_t)5LL)" for numbers and escaped characters in strings.

      // Create a fake output stream so we can grab the string output.
      ostringstream oss;
      translator_output tmp_o(oss);

      // Temporarily swap out the real translator_output stream with our
      // fake one.
      translator_output *saved_o = o;
      o = &tmp_o;

      // Visit the expression then restore the original output stream
      e->visit (this);
      o = saved_o;

      // All instances of this tmpvar will use the literal value.
      t.override (oss.str());
    }
  else
    c_assign (t.value(), e, msg);
}

struct expression_is_functioncall : public nop_visitor
{
  functioncall* fncall;
  expression_is_functioncall ()
    : fncall(NULL) {}

  void visit_functioncall (functioncall* e)
    {
      fncall = e;
    }
};

void
c_unparser::c_assign (const string& lvalue, expression* rvalue,
		      const char* msg)
{
  if (rvalue->type == pe_long)
    {
      o->newline() << lvalue << " = ";
      rvalue->visit (this);
      o->line() << ";";
    }
  else if (rvalue->type == pe_string)
    {
      expression_is_functioncall eif;
      rvalue->visit(& eif);
      if (!session->unoptimized && eif.fncall)
        {
	  const functioncall* saved_fncall = assigned_functioncall;
	  const string* saved_retval = assigned_functioncall_retval;

          // let the functioncall know that the return value is being saved/used
          // and keep track of the lvalue, so that the retval assignment can
          // happen in ::visit_functioncall, to avoid complications with nesting.
	  assigned_functioncall = eif.fncall;
	  assigned_functioncall_retval = &lvalue;
          eif.fncall->visit (this);
          o->line() << ";";

	  assigned_functioncall = saved_fncall;
	  assigned_functioncall_retval = saved_retval;
        }
      else
        {
          // will call rvalue->visit()
          c_strcpy (lvalue, rvalue);
        }
    }
  else
    {
      string fullmsg = string(msg) + _(" type unsupported");
      throw SEMANTIC_ERROR (fullmsg, rvalue->tok);
    }
}


void
c_unparser::c_assign (const string& lvalue, const string& rvalue,
		      exp_type type, const char* msg, const token* tok)
{
  if (type == pe_long)
    {
      o->newline() << lvalue << " = " << rvalue << ";";
    }
  else if (type == pe_string)
    {
      c_strcpy (lvalue, rvalue);
    }
  else
    {
      string fullmsg = string(msg) + _(" type unsupported");
      throw SEMANTIC_ERROR (fullmsg, tok);
    }
}


void
c_unparser_assignment::c_assignop(tmpvar & res,
				  var const & lval,
				  tmpvar const & rval,
				  token const * tok)
{
  // This is common code used by scalar and array-element assignments.
  // It assumes an operator-and-assignment (defined by the 'pre' and
  // 'op' fields of c_unparser_assignment) is taking place between the
  // following set of variables:
  //
  // res: the result of evaluating the expression, a temporary
  // lval: the lvalue of the expression, which may be damaged
  // rval: the rvalue of the expression, which is a temporary or constant

  // we'd like to work with a local tmpvar so we can overwrite it in
  // some optimized cases

  translator_output* o = parent->o;

  if (res.type() == pe_string)
    {
      if (post)
	throw SEMANTIC_ERROR (_("post assignment on strings not supported"),
			      tok);
      if (op == "=")
	{
	  parent->c_strcpy (lval.value(), rval.value());
	  // no need for second copy
	  res = rval;
        }
      else if (op == ".=")
	{
	  parent->c_strcat (lval.value(), rval.value());
	  res = lval;
	}
      else
        throw SEMANTIC_ERROR (_F("string assignment operator %s unsupported",
				 op.to_string().c_str()), tok);
    }
  else if (op == "<<<")
    {
      int stat_op_count = lval.sdecl().stat_ops & (STAT_OP_COUNT|STAT_OP_AVG|STAT_OP_VARIANCE);
      int stat_op_sum = lval.sdecl().stat_ops & (STAT_OP_SUM|STAT_OP_AVG|STAT_OP_VARIANCE);
      int stat_op_min = lval.sdecl().stat_ops & STAT_OP_MIN;
      int stat_op_max = lval.sdecl().stat_ops & STAT_OP_MAX;
      int stat_op_variance = lval.sdecl().stat_ops & STAT_OP_VARIANCE;

      assert(lval.type() == pe_stats);
      assert(rval.type() == pe_long);
      assert(res.type() == pe_long);

      o->newline() << "_stp_stat_add (" << lval << ", " << rval << ", " <<
                      stat_op_count << ", " <<  stat_op_sum << ", " <<
                      stat_op_min << ", " << stat_op_max << ", " <<
                      stat_op_variance << ");";
      res = rval;
    }
  else if (res.type() == pe_long)
    {
      // a lot of operators come through this "gate":
      // - vanilla assignment "="
      // - stats aggregation "<<<"
      // - modify-accumulate "+=" and many friends
      // - pre/post-crement "++"/"--"
      // - "/" and "%" operators, but these need special handling in kernel

      // compute the modify portion of a modify-accumulate
      string macop;
      unsigned oplen = op.size();
      if (op == "=")
	macop = "*error*"; // special shortcuts below
      else if (op == "++" || op == "+=")
	macop = "+=";
      else if (op == "--" || op == "-=")
	macop = "-=";
      else if (oplen > 1 && op[oplen-1] == '=') // for *=, <<=, etc...
	macop = op;
      else
	// internal error
	throw SEMANTIC_ERROR (_("unknown macop for assignment"), tok);

      if (post)
	{
          if (macop == "/" || macop == "%" || op == "=")
            throw SEMANTIC_ERROR (_("invalid post-mode operator"), tok);

	  o->newline() << res << " = " << lval << ";";

	  if (macop == "+=" || macop == "-=")
	    o->newline() << lval << " " << macop << " " << rval << ";";
	  else
	    o->newline() << lval << " = " << res << " " << macop << " " << rval << ";";
	}
      else
	{
          if (op == "=") // shortcut simple assignment
	    {
	      o->newline() << lval << " = " << rval << ";";
	      res = rval;
	    }
	  else
	    {
	      if (macop == "/=" || macop == "%=")
		{
		  o->newline() << "if (unlikely(!" << rval << ")) {";
		  o->newline(1) << "c->last_error = ";
                  o->line() << STAP_T_03;
		  o->newline() << "c->last_stmt = " << lex_cast_qstring(*rvalue->tok) << ";";
		  o->newline() << "goto out;";
		  o->newline(-1) << "}";
		  o->newline() << lval << " = "
			       << ((macop == "/=") ? "_stp_div64" : "_stp_mod64")
			       << " (NULL, " << lval << ", " << rval << ");";
		}
	      else
		o->newline() << lval << " " << macop << " " << rval << ";";
	      res = lval;
	    }
	}
    }
    else
      throw SEMANTIC_ERROR (_("assignment type not yet implemented"), tok);
}


void
c_unparser::c_declare(exp_type ty, const string &ident)
{
  o->newline() << c_typename (ty) << " " << ident << ";";
}


void
c_unparser::c_declare_static(exp_type ty, const string &ident)
{
  o->newline() << "static " << c_typename (ty) << " " << ident << ";";
}


void
c_unparser::c_strcpy (const string& lvalue, const string& rvalue)
{
  o->newline() << "strlcpy ("
		   << lvalue << ", "
		   << rvalue << ", MAXSTRINGLEN);";
}


void
c_unparser::c_strcpy (const string& lvalue, expression* rvalue)
{
  o->newline() << "strlcpy (" << lvalue << ", ";
  rvalue->visit (this);
  o->line() << ", MAXSTRINGLEN);";
}


void
c_unparser::c_strcat (const string& lvalue, const string& rvalue)
{
  o->newline() << "strlcat ("
	       << lvalue << ", "
	       << rvalue << ", MAXSTRINGLEN);";
}


void
c_unparser::c_strcat (const string& lvalue, expression* rvalue)
{
  o->newline() << "strlcat (" << lvalue << ", ";
  rvalue->visit (this);
  o->line() << ", MAXSTRINGLEN);";
}


bool
c_unparser::is_local(vardecl const *r, token const *tok)
{
  if (current_probe)
    {
      for (unsigned i=0; i<current_probe->locals.size(); i++)
	{
	  if (current_probe->locals[i] == r)
	    return true;
	}
    }
  else if (current_function)
    {
      for (unsigned i=0; i<current_function->locals.size(); i++)
	{
	  if (current_function->locals[i] == r)
	    return true;
	}

      for (unsigned i=0; i<current_function->formal_args.size(); i++)
	{
	  if (current_function->formal_args[i] == r)
	    return true;
	}
    }

  for (unsigned i=0; i<session->globals.size(); i++)
    {
      if (session->globals[i] == r)
	return false;
    }

  if (tok)
    throw SEMANTIC_ERROR (_("unresolved symbol"), tok);
  else
    throw SEMANTIC_ERROR (_("unresolved symbol: ") + (string)r->name);
}


tmpvar
c_unparser::gensym(exp_type ty)
{
  return tmpvar (this, ty, tmpvar_counter);
}

aggvar
c_unparser::gensym_aggregate()
{
  return aggvar (this, tmpvar_counter);
}


var
c_unparser::getvar(vardecl *v, token const *tok)
{
  bool loc = is_local (v, tok);
  if (loc)
    return var (this, loc, v->type, v->name);
  else
    {
      statistic_decl sd;
      std::map<interned_string, statistic_decl>::const_iterator i;
      i = session->stat_decls.find(v->name);
      if (i != session->stat_decls.end())
	sd = i->second;
      return var (this, loc, v->type, sd, v->name);
    }
}


mapvar
c_unparser::getmap(vardecl *v, token const *tok)
{
  if (v->arity < 1)
    throw SEMANTIC_ERROR(_("attempt to use scalar where map expected"), tok);
  statistic_decl sd;
  std::map<interned_string, statistic_decl>::const_iterator i;
  i = session->stat_decls.find(v->name);
  if (i != session->stat_decls.end())
    sd = i->second;
  return mapvar (this, is_local (v, tok), v->type, sd,
      v->name, v->index_types, v->maxsize, v->wrap);
}


itervar
c_unparser::getiter(symbol *s)
{
  return itervar (this, s, tmpvar_counter);
}


// Queue up some actions to remove from actionremaining.  Set update=true at
// the end of basic blocks to actually update actionremaining and check it
// against MAXACTION.
void
c_unparser::record_actions (unsigned actions, const token* tok, bool update)
{
  action_counter += actions;

  // Update if needed, or after queueing up a few actions, in case of very
  // large code sequences.
  if (((update && action_counter > 0) || action_counter >= 10/*<-arbitrary*/)
    && !session->suppress_time_limits && !already_checked_action_count)
    {

      o->newline() << "c->actionremaining -= " << action_counter << ";";
      o->newline() << "if (unlikely (c->actionremaining <= 0)) {";
      o->newline(1) << "c->last_error = ";
      o->line() << STAP_T_04;

      // XXX it really ought to be illegal for anything to be missing a token,
      // but until we're sure of that, we need to defend against NULL.
      if (tok)
        o->newline() << "c->last_stmt = " << lex_cast_qstring(*tok) << ";";

      o->newline() << "goto out;";
      o->newline(-1) << "}";
      action_counter = 0;
    }
}


void
c_unparser::visit_block (block *s)
{
  // Key insight: individual statements of a block can reuse
  // temporary variable slots, since temporaries don't survive
  // statement boundaries.  So we use gcc's anonymous union/struct
  // facility to explicitly overlay the temporaries.
  start_compound_statement ("block_statement", s);

  o->newline() << "{";
  o->indent (1);

  // PR26296 Designate the statements in the block for locking and unlocking
  // by whether they are the first (or last) to refer to globals.  Don't emit
  // locking operations here at all: force them to do so via the pushdown_* set,
  // except if there are no locks_needed_p statements at all in our body.
  if (pushdown_lock_p(s) ||
      pushdown_unlock_p(s))
    {
      bool pushed_lock_down = false;
 
      // if needed, find the lock insertion site; instruct it to lock
      if (pushdown_lock_p(s))
        {
          for (unsigned i=0; i<s->statements.size(); i++)
            {
              struct statement *stmt = s->statements[i];
              if (locks_needed_p (stmt))
                {
                  pushed_lock_down = true;
                  pushdown_lock.insert (stmt);

                  if (! stmt->might_pushdown_lock ())
                    {
                      // now we know the subsquement stmts must have locks
                      // held, so we don't bother going forward.
                      break;
                    }
                }
            }
        }

      // if needed, find the unlock insertion site; instruct it to unlock
      if (pushdown_unlock_p(s))
        for (ssize_t i=s->statements.size()-1; i>=0; i--) // NB: traverse backward!
          if (locks_needed_p (s->statements[i]))
            { pushdown_unlock.insert(s->statements[i]); pushed_lock_down = true; break; }

      if (! pushed_lock_down)
        {
          // NB: pushed_lock_down will remain false if no statement in this block requires global
          // locks at all.  Ideally, this shouldn't happen, since our parent staptree* shouldn't
          // have entered us into push_*lock_down[].  Us being in both push_lock_down[] AND
          // push_unlock_down[] in this case is especially goofy.  Nevertheless, let's play
          // along and emit a dummy lock and/or unlock at the top.
          locks_not_needed_argh (s);
        }
    }
    
  for (unsigned i=0; i<s->statements.size(); i++)
    {
      try
        {
          wrap_compound_visit (s->statements[i]); // incl. lock/unlock as appropriate
	  o->newline();
        }
      catch (const semantic_error& e)
        {
          session->print_error (e);
        }
    }
  o->newline(-1) << "}";

  close_compound_statement ("block_statement", s);
}


void c_unparser::visit_try_block (try_block *s)
{
  record_actions(0, s->tok, true); // flush prior actions

  start_compound_statement ("try_block", s);

  // PR26296: for try/catch, don't try to push lock/unlock down
  if (pushdown_lock_p(s))
    emit_lock();
  
  o->newline() << "{";
  o->newline(1) << "__label__ normal_fallthrough;";
  o->newline(1) << "{";
  o->newline() << "__label__ deref_fault;";
  o->newline() << "__label__ out;";

  assert (!session->unoptimized || s->try_block); // dead_stmtexpr_remover would zap it
  if (s->try_block)
    {
      wrap_compound_visit (s->try_block);
      record_actions(0, s->try_block->tok, true); // flush accumulated actions
    }
  o->newline() << "goto normal_fallthrough;";

  o->newline() << "deref_fault: __attribute__((unused));";
  o->newline() << "out: __attribute__((unused));";

  // Close the scope of the above nested 'out' label, to make sure
  // that the catch block, should it encounter errors, does not resolve
  // a 'goto out;' to the above label, causing infinite looping.
  o->newline(-1) << "}";

  o->newline() << "if (likely(c->last_error == NULL)) goto out;";

  // NB: MAXACTION errors are not catchable and we should never clear the error
  // message below otherwise the source location in the message would
  // become inaccurate (always being the top-level try/catch statement's).
  if (!session->suppress_time_limits)
    o->newline() << "if (unlikely (c->actionremaining <= 0)) goto out;";
  
  if (s->catch_error_var)
    {
      var cev(getvar(s->catch_error_var->referent, s->catch_error_var->tok));
      c_strcpy (cev.value(), "c->last_error");
    }
  o->newline() << "c->last_error = NULL;";

  // Prevent the catch{} handler from even starting if MAXACTIONS have
  // already been used up.  Add one for the act of catching too.
  record_actions(1, s->tok, true);

  if (s->catch_block)
    {
      wrap_compound_visit (s->catch_block);
      record_actions(0, s->catch_block->tok, true); // flush accumulated actions
    }

  o->newline() << "normal_fallthrough:";
  o->newline() << ";"; // to have _some_ statement
  o->newline(-1) << "}";

  if (pushdown_unlock_p(s))
    emit_unlock();
  
  close_compound_statement ("try_block", s);
}


void
c_unparser::visit_embeddedcode (embeddedcode *s)
{
  // Automatically add a call to assert_is_myproc to any code tagged with
  // /* myproc-unprivileged */
  if (s->tagged_p ("/* myproc-unprivileged */"))
    o->newline() << "assert_is_myproc();";
  o->newline() << "{";

  bool ln = locks_needed_p(s);
  if (!ln)
    locks_not_needed_argh(s);
  
  // PR26296
  if (ln && pushdown_lock_p(s))
    emit_lock();
  
  //  if (1 || s->tagged_p ("CATCH_DEREF_FAULT"))
  //    o->newline() << "__label__ deref_fault;";

  vector<vardecl*> read_defs;
  vector<vardecl*> write_defs;
  for (unsigned i = 0; i < session->globals.size(); i++)
    {
      vardecl* v = session->globals[i];
      if (v->synthetic) continue; /* skip synthetic variables; embedded c can't access them. */
      string name = v->unmangled_name;
      assert (name != "");
      if (s->tagged_p("/* pragma:read:" + name + " */"))
        {
          c_global_read_def(v);
          read_defs.push_back(v);
        }
      if (s->tagged_p("/* pragma:write:" + name + " */"))
        {
          c_global_write_def(v);
          write_defs.push_back(v);
        }
    }

  o->newline(1) << s->code;
  o->indent(-1);

  for (vector<vardecl*>::const_iterator it = read_defs.begin(); it != read_defs.end(); ++it)
    c_global_read_undef(*it);
  for (vector<vardecl*>::const_iterator it = write_defs.begin(); it != write_defs.end(); ++it)
    c_global_write_undef(*it);

  //  if (1 || s->tagged_p ("CATCH_DEREF_FAULT"))
  //    o->newline() << ";";

  if (ln && pushdown_unlock_p(s))
    emit_unlock();
  
  o->newline() << "}";
}


void
c_unparser::visit_null_statement (null_statement *s)
{
  o->newline() << "/* null */;";
  locks_not_needed_argh(s);
}


void
c_unparser::visit_expr_statement (expr_statement *s)
{
  bool ln = locks_needed_p(s);
  
  if (!ln)
    locks_not_needed_argh(s);
  
  if (ln && pushdown_lock_p(s))
    emit_lock();
  
  o->newline() << "(void) ";
  s->value->visit (this);
  o->line() << ";";
  record_actions(1, s->tok);

  if (ln && pushdown_unlock_p(s))
    emit_unlock();
}


void
c_tmpcounter::wrap_compound_visit (statement *s)
{
  if (!s) return;

  std::ostream::pos_type before_struct_pos;
  std::ostream::pos_type after_struct_pos;

  start_struct_def(before_struct_pos, after_struct_pos, s->tok);
  c_unparser::wrap_compound_visit (s);
  close_struct_def(before_struct_pos, after_struct_pos);
}

void
c_tmpcounter::wrap_compound_visit (expression *e)
{
  if (!e) return;

  std::ostream::pos_type before_struct_pos;
  std::ostream::pos_type after_struct_pos;

  start_struct_def(before_struct_pos, after_struct_pos, e->tok);
  c_unparser::wrap_compound_visit (e);
  close_struct_def(before_struct_pos, after_struct_pos);
}

void
c_tmpcounter::start_struct_def (std::ostream::pos_type &before,
                                std::ostream::pos_type &after, const token* tok)
{
  // To avoid lots of empty structs, remember  where we are now.  Then,
  // output the struct start and remember that positon.  If when we get
  // done with the statement we haven't moved, then we don't really need
  // the struct.  To get rid of the struct start we output, we'll seek back
  // to where we were before we output the struct (done in ::close_struct_def).
  translator_output *o = parent->o;
  before = o->tellp();
  o->newline() << "struct { /* source: " << tok->location.file->name
               << ":" << lex_cast(tok->location.line) << " */";
  o->indent(1);
  after = o->tellp();
}

void
c_tmpcounter::close_struct_def (std::ostream::pos_type before,
                                std::ostream::pos_type after)
{
  // meant to be used with ::start_struct_def. remove the struct if empty.
  translator_output *o = parent->o;
  o->indent(-1);
  if (after == o->tellp())
    o->seekp(before);
  else
    o->newline() << "};";
}

void
c_tmpcounter::start_compound_statement (const char* tag, statement *s)
{
  const source_loc& loc = s->tok->location;
  translator_output *o = parent->o;
  o->newline() << "union { /* " << tag << ": "
               << loc.file->name << ":"
               << lex_cast(loc.line) << " */";
  o->indent(1);
}

void
c_tmpcounter::close_compound_statement (const char*, statement *)
{
  translator_output *o = parent->o;
  o->newline(-1) << "};";
}


void
c_unparser::visit_if_statement (if_statement *s)
{
  record_actions(1, s->tok, true);

  start_compound_statement ("if_statement", s);

  bool condition_nl = locks_needed_p (s->condition);
  bool thenblock_nl = locks_needed_p (s->thenblock);
  bool elseblock_nl = s->elseblock ? locks_needed_p (s->elseblock) : false;
  
  if (!condition_nl && !thenblock_nl && !elseblock_nl)
    locks_not_needed_argh(s);

  if (condition_nl && pushdown_lock_p(s))
    emit_lock(); // and then thenblock/elseblock don't need to lock or pushdown!
  
  o->newline() << "if (";
  o->indent (1);

  wrap_compound_visit (s->condition);
  o->indent (-1);
  o->line() << ")";
  
  o->line() << "{";
  o->indent (1);
  
  if (condition_nl && !thenblock_nl && pushdown_unlock_p(s))
    emit_unlock();
  
  if (!condition_nl && thenblock_nl && pushdown_lock_p(s))
    pushdown_lock.insert(s->thenblock);

  if (thenblock_nl && pushdown_unlock_p(s))
    pushdown_unlock.insert(s->thenblock);
  
  wrap_compound_visit (s->thenblock);
  record_actions(0, s->thenblock->tok, true);

  if (!condition_nl && !thenblock_nl && elseblock_nl && pushdown_lock_p(s))
    emit_lock(); // reluctantly

  o->newline(-1) << "}";
  
  if (s->elseblock)
    {
      o->newline() << "else {";
      o->indent (1);

      if (condition_nl && !elseblock_nl && pushdown_unlock_p(s))
        emit_unlock();

      if (!condition_nl && elseblock_nl && pushdown_lock_p(s))
        pushdown_lock.insert(s->elseblock);
      
      if (elseblock_nl && pushdown_unlock_p(s))
        pushdown_unlock.insert(s->elseblock);

      wrap_compound_visit (s->elseblock);
      record_actions(0, s->elseblock->tok, true);

      if (!condition_nl && thenblock_nl && !elseblock_nl && pushdown_lock_p(s))
        emit_lock(); // reluctantly
      
      o->newline(-1) << "}";
    }

  close_compound_statement ("if_statement", s);
}


void
c_unparser::visit_for_loop (for_loop *s)
{
  string ctr = lex_cast (label_counter++);
  string toplabel = "top_" + ctr;
  string contlabel = "continue_" + ctr;
  string breaklabel = "break_" + ctr;

  // PR26269 lockpushdown:
  // for loops, forget optimizing, just emit locks at top & bottom
  if (pushdown_lock_p(s))
    emit_lock();
  
  start_compound_statement ("for_loop", s);

  // initialization
  wrap_compound_visit (s->init);
  record_actions(1, s->tok, true);

  // condition
  o->newline(-1) << toplabel << ":";

  // Emit an explicit action here to cover the act of iteration.
  // Equivalently, it can stand for the evaluation of the condition
  // expression.
  o->indent(1);
  record_actions(1, s->tok);

  o->newline() << "if (! (";
  if (s->cond->type != pe_long)
    throw SEMANTIC_ERROR (_("expected numeric type"), s->cond->tok);
  wrap_compound_visit (s->cond);
  o->line() << ")) goto " << breaklabel << ";";

  // body
  loop_break_labels.push_back (breaklabel);
  loop_continue_labels.push_back (contlabel);
  wrap_compound_visit (s->block);
  record_actions(0, s->block->tok, true);
  loop_break_labels.pop_back ();
  loop_continue_labels.pop_back ();

  // iteration
  o->newline(-1) << contlabel << ":";
  o->indent(1);
  wrap_compound_visit (s->incr);
  o->newline() << "goto " << toplabel << ";";

  // exit
  o->newline(-1) << breaklabel << ":";
  o->newline(1) << "; /* dummy statement */";

  if (pushdown_unlock_p(s))
    emit_unlock();
  
  close_compound_statement ("for_loop", s);
}


struct arrayindex_downcaster
  : public traversing_visitor
{
  arrayindex *& arr;

  arrayindex_downcaster (arrayindex *& arr)
    : arr(arr)
  {}

  void visit_arrayindex (arrayindex* e)
  {
    arr = e;
  }
};


static bool
expression_is_arrayindex (expression *e,
			  arrayindex *& hist)
{
  arrayindex *h = NULL;
  arrayindex_downcaster d(h);
  e->visit (&d);
  if (static_cast<void*>(h) == static_cast<void*>(e))
    {
      hist = h;
      return true;
    }
  return false;
}


// Look for opportunities to used a saved value at the beginning of the loop
void
c_unparser::visit_foreach_loop_value (foreach_loop* s, const string& value)
{
  bool stable_value = false;

  // There are three possible cases that we might easily retrieve the value:
  //   1. foreach ([keys] in any_array_type)
  //   2. foreach (idx in @hist_*(stat))
  //   3. foreach (idx in @hist_*(stat[keys]))
  //
  // For 1 and 2, we just need to check that the keys/idx are const throughout
  // the loop.  For 3, we'd have to check also that the arbitrary keys
  // expressions indexing the stat are const -- much harder, so I'm punting
  // that case for now.

  symbol *array;
  hist_op *hist;
  classify_indexable (s->base, array, hist);

  if (!(hist && get_symbol_within_expression(hist->stat)->referent->arity > 0))
    {
      set<vardecl*> indexes;
      for (unsigned i=0; i < s->indexes.size(); ++i)
        indexes.insert(s->indexes[i]->referent);

      varuse_collecting_visitor v(*session);
      s->block->visit (&v);
      v.embedded_seen = false; // reset because we only care about the indexes
      if (v.side_effect_free_wrt(indexes))
        stable_value = true;
    }

  if (stable_value)
    {
      // Rather than trying to compare arrayindexes to this foreach_loop
      // manually, we just create a fake arrayindex that would match the
      // foreach_loop, render it as a string, and later render encountered
      // arrayindexes as strings and compare.
      arrayindex ai;
      ai.base = s->base;
      for (unsigned i=0; i < s->indexes.size(); ++i)
        ai.indexes.push_back(s->indexes[i]);
      string loopai = lex_cast(ai);
      foreach_loop_values[loopai] = value;
      s->block->visit (this);
      foreach_loop_values.erase(loopai);
    }
  else
    s->block->visit (this);
}


bool
c_unparser::get_foreach_loop_value (arrayindex* ai, string& value)
{
  if (!ai)
    return false;
  map<string,string>::iterator it = foreach_loop_values.find(lex_cast(*ai));
  if (it == foreach_loop_values.end())
    return false;
  value = it->second;
  return true;
}


void
c_unparser::visit_foreach_loop (foreach_loop *s)
{
  symbol *array;
  hist_op *hist;
  classify_indexable (s->base, array, hist);

  string ctr = lex_cast (label_counter++);
  string toplabel = "top_" + ctr;
  string contlabel = "continue_" + ctr;
  string breaklabel = "break_" + ctr;

  // PR26269 lockpushdown:
  // for loops, forget optimizing, just emit locks at top & bottom
  if (pushdown_lock_p(s))
    emit_lock();

  if (array)
    {
      mapvar mv = getmap (array->referent, s->tok);
      vector<var> keys;

      // NB: structure parallels for_loop

      // initialization

      tmpvar *res_limit = NULL;
      if (s->limit)
        {
	  // Evaluate the limit expression once.
	  res_limit = new tmpvar(gensym(pe_long));
	  c_assign (*res_limit, s->limit, "foreach limit");
	}

      // aggregate array if required
      if (mv.is_parallel())
	{
	  o->newline() << "if (unlikely(NULL == " << mv.calculate_aggregate() << ")) {";
	  o->newline(1) << "c->last_error = ";
          o->line() << STAP_T_05 << mv << "\";";
	  o->newline() << "c->last_stmt = " << lex_cast_qstring(*s->tok) << ";";
	  o->newline() << "goto out;";
	  o->newline(-1) << "}";

	  // sort array if desired
	  if (s->sort_direction)
	    {
	      string sort_column;

	      // If the user wanted us to sort by value, we'll sort by
	      // @count or selected function instead for aggregates.  
	      // See runtime/map.c
	      if (s->sort_column == 0)
                switch (s->sort_aggr) {
                default: case sc_none: case sc_count: sort_column = "SORT_COUNT"; break;
                case sc_sum: sort_column = "SORT_SUM"; break;
                case sc_min: sort_column = "SORT_MIN"; break;
                case sc_max: sort_column = "SORT_MAX"; break;
                case sc_average: sort_column = "SORT_AVG"; break;
                }
	      else
		sort_column = lex_cast(s->sort_column);

	      o->newline() << "else"; // only sort if aggregation was ok
	      if (s->limit)
	        {
		  o->newline(1) << mv.function_keysym("sortn", true) <<" ("
				<< mv.fetch_existing_aggregate() << ", "
				<< *res_limit << ", " << sort_column << ", "
				<< - s->sort_direction << ");";
		}
	      else
	        {
		  o->newline(1) << mv.function_keysym("sort", true) <<" ("
				<< mv.fetch_existing_aggregate() << ", "
				<< sort_column << ", "
				<< - s->sort_direction << ");";
		}
	      o->indent(-1);
	    }
        }
      else
	{
	  // sort array if desired
	  if (s->sort_direction)
	    {
	      if (s->limit)
	        {
		  o->newline() << mv.function_keysym("sortn") <<" ("
			       << mv.value() << ", "
			       << *res_limit << ", " << s->sort_column << ", "
			       << - s->sort_direction << ");";
		}
	      else
	        {
		  o->newline() << mv.function_keysym("sort") <<" ("
			       << mv.value() << ", "
			       << s->sort_column << ", "
			       << - s->sort_direction << ");";
		}
	    }
	}

      // NB: sort direction sense is opposite in runtime, thus the negation

      tmpvar *limitv = NULL;
      if (s->limit)
      {
	  // Create the loop limit variable here and initialize it.
	  limitv = new tmpvar(gensym (pe_long));
	  o->newline() << *limitv << " = 0LL;";
      }

      if (mv.is_parallel())
	aggregations_active.insert(mv.value());

      itervar iv = getiter (array);
      o->newline() << iv << " = " << iv.start (mv) << ";";

      vector<tmpvar *> array_slice_vars;
      // store the the variables corresponding to the index of the array slice
      // as temporary variables
      if (!s->array_slice.empty())
          for (unsigned i = 0; i < s->array_slice.size(); ++i)
            {
              if (s->array_slice[i])
                {
                  tmpvar *asvar = new tmpvar(gensym(s->array_slice[i]->type));
                  c_assign(*asvar, s->array_slice[i], "array slice index");
                  array_slice_vars.push_back(asvar);
                }
              else
                array_slice_vars.push_back(NULL);
            }

      record_actions(1, s->tok, true);

      // condition
      o->newline(-1) << toplabel << ":";

      // Emit an explicit action here to cover the act of iteration.
      // Equivalently, it can stand for the evaluation of the
      // condition expression.
      o->indent(1);
      record_actions(1, s->tok);

      o->newline() << "if (! (" << iv << ")) goto " << breaklabel << ";";

      // body
      loop_break_labels.push_back (breaklabel);
      loop_continue_labels.push_back (contlabel);
      o->newline() << "{";
      o->indent (1);

      if (s->limit)
      {
	  // If we've been through LIMIT loop iterations, quit.
	  o->newline() << "if (" << *limitv << "++ >= " << *res_limit
		       << ") goto " << breaklabel << ";";

	  // We're done with limitv and res_limit.
	  delete limitv;
	  delete res_limit;
      }

      for (unsigned i = 0; i < s->indexes.size(); ++i)
	{
	  // copy the iter values into the specified locals
	  var v = getvar (s->indexes[i]->referent);
	  c_assign (v, iv.get_key (mv, v.type(), i), s->tok);
	}

      // in the case that the user specified something like
      // foreach ([a,b] in foo[*, 123]), need to check that it iterates over
      // the specified values, ie b is alwasy going to be 123
      if (!s->array_slice.empty())
        {
          //add in the beginning portion of the if statement
          o->newline() << "if (0"; // in case all are wildcards
          for (unsigned i = 0; i < s->array_slice.size(); ++i)

            // only output a comparsion if the expression is not "*".
            if (s->array_slice[i])
            {
              o->line() << " || ";
              if (s->indexes[i]->type == pe_string)
                {
                  if (s->array_slice[i]->type != pe_string)
                    throw SEMANTIC_ERROR (_("expected string types"), s->tok);
                  o->line() << "strncmp(" << getvar (s->indexes[i]->referent)
                            << ", " << *array_slice_vars[i];
                  o->line() << ", MAXSTRINGLEN) !=0";
                }
              else if (s->indexes[i]->type == pe_long)
                {
                  if (s->array_slice[i]->type != pe_long)
                    throw SEMANTIC_ERROR (_("expected numeric types"), s->tok);
                  o->line() << getvar (s->indexes[i]->referent) << " != "
                            << *array_slice_vars[i];
                }
              else
              {
                  throw SEMANTIC_ERROR (_("unexpected type"), s->tok);
              }
            }
          o->line() << ") goto " << contlabel << ";"; // end of the if statment
        }

      if (s->value)
        {
	  var v = getvar (s->value->referent);
	  c_assign (v, iv.get_value (mv, v.type()), s->tok);
        }

      visit_foreach_loop_value(s, iv.get_value(mv, array->type));
      record_actions(0, s->block->tok, true);
      o->newline(-1) << "}";
      loop_break_labels.pop_back ();
      loop_continue_labels.pop_back ();

      // iteration
      o->newline(-1) << contlabel << ":";
      o->newline(1) << iv << " = " << iv.next (mv) << ";";
      o->newline() << "goto " << toplabel << ";";

      // exit
      o->newline(-1) << breaklabel << ":";
      o->newline(1) << "; /* dummy statement */";

      if (mv.is_parallel())
	aggregations_active.erase(mv.value());
    }
  else
    {
      // Iterating over buckets in a histogram.

      // First make sure we have exactly one pe_long variable to use as
      // our bucket index.
      if (s->indexes.size() != 1 || s->indexes[0]->referent->type != pe_long)
	throw SEMANTIC_ERROR(_("Invalid indexing of histogram"), s->tok);

      tmpvar *res_limit = NULL;
      tmpvar *limitv = NULL;
      if (s->limit)
        {
	  // Evaluate the limit expression once.
	  res_limit = new tmpvar(gensym(pe_long));
	  c_assign (*res_limit, s->limit, "foreach limit");

	  // Create the loop limit variable here and initialize it.
	  limitv = new tmpvar(gensym (pe_long));
	  o->newline() << *limitv << " = 0LL;";
	}

      var bucketvar = getvar (s->indexes[0]->referent);

      aggvar agg = gensym_aggregate ();

      var *v = load_aggregate(hist->stat, agg);
      v->assert_hist_compatible(*hist);

      record_actions(1, s->tok, true);
      o->newline() << "for (" << bucketvar << " = 0; "
		   << bucketvar << " < " << v->buckets() << "; "
		   << bucketvar << "++) { ";
      o->newline(1);
      loop_break_labels.push_back (breaklabel);
      loop_continue_labels.push_back (contlabel);

      if (s->limit)
      {
	  // If we've been through LIMIT loop iterations, quit.
	  o->newline() << "if (" << *limitv << "++ >= " << *res_limit
		       << ") break;";

	  // We're done with limitv and res_limit.
	  delete limitv;
	  delete res_limit;
      }

      if (s->value)
        {
          var v = getvar (s->value->referent);
          c_assign (v, agg.get_hist (bucketvar), s->tok);
        }

      visit_foreach_loop_value(s, agg.get_hist(bucketvar));
      record_actions(1, s->block->tok, true);

      o->newline(-1) << contlabel << ":";
      o->newline(1) << "continue;";
      o->newline(-1) << breaklabel << ":";
      o->newline(1) << "break;";
      o->newline(-1) << "}";
      loop_break_labels.pop_back ();
      loop_continue_labels.pop_back ();

      delete v;
    }

  if (pushdown_unlock_p(s))
    emit_unlock();
}


void
c_unparser::visit_return_statement (return_statement* s)
{
  if (current_function == 0)
    throw SEMANTIC_ERROR (_("cannot 'return' from probe"), s->tok);

  // PR26296: We should not encounter a RETURN statement in a
  // lock-relevant section of code (a probe handler body) at all.
  if (pushdown_lock_p(s) || pushdown_unlock_p(s))
    throw SEMANTIC_ERROR (_("unexpected lock pushdown in 'return'"), s->tok);    
  
  if (s->value)
    {
      if (s->value->type != current_function->type)
        throw SEMANTIC_ERROR (_("return type mismatch"), current_function->tok,
                              s->tok);

      c_assign ("l->__retvalue", s->value, "return value");
    }
  else if (current_function->type != pe_unknown)
    throw SEMANTIC_ERROR (_("return type mismatch"), current_function->tok,
                          s->tok);


  
  record_actions(1, s->tok, true);
  o->newline() << "goto out;";
}


void
c_unparser::visit_next_statement (next_statement* s)
{
  /* Set next flag to indicate to caller to call next alternative function */
  if (current_function != 0)
    {
      o->newline() << "c->next = 1;";
      // PR26296: We should not encounter a NEXT statement in a
      // lock-irrelevant section of code (of a function body) at all.
      if (pushdown_lock_p(s) || pushdown_unlock_p(s))
        throw SEMANTIC_ERROR (_("unexpected lock pushdown in 'next'"), s->tok);
    }
  else if (current_probe != 0)
    locks_not_needed_argh(s);

  record_actions(1, s->tok, true);
  o->newline() << "goto out;";
}


struct delete_statement_operand_visitor:
  public throwing_visitor
{
  c_unparser *parent;
  delete_statement_operand_visitor (c_unparser *p):
    throwing_visitor (_("invalid operand of delete expression")),
    parent (p)
  {}
  void visit_symbol (symbol* e);
  void visit_arrayindex (arrayindex* e);
};

void
delete_statement_operand_visitor::visit_symbol (symbol* e)
{
  translator_output* o = parent->o;
  assert (e->referent != 0);
  if (e->referent->arity > 0)
    {
      mapvar mvar = parent->getmap(e->referent, e->tok);
      /* NB: Memory deallocation/allocation operations
       are not generally safe.
      o->newline() << mvar.fini ();
      o->newline() << mvar.init ();
      */
      if (mvar.is_parallel())
	o->newline() << "_stp_pmap_clear (" << mvar.value() << ");";
      else
	o->newline() << "_stp_map_clear (" << mvar.value() << ");";
    }
  else
    {
      var v = parent->getvar(e->referent, e->tok);
      switch (e->type)
	{
	case pe_stats:
	  o->newline() << "_stp_stat_clear (" << v.value() << ");";
	  break;
	case pe_long:
	  o->newline() << v.value() << " = 0;";
	  break;
	case pe_string:
	  o->newline() << v.value() << "[0] = '\\0';";
	  break;
	case pe_unknown:
	default:
	  throw SEMANTIC_ERROR(_("Cannot delete unknown expression type"), e->tok);
	}
    }
}

void
delete_statement_operand_visitor::visit_arrayindex (arrayindex* e)
{
  symbol *array;
  hist_op *hist;
  classify_indexable (e->base, array, hist);
  translator_output* o = parent->o;

  if (array)
    {
      bool array_slice = false;
      for (unsigned i = 0; i < e->indexes.size(); i ++)
        if (e->indexes[i] == NULL)
          {
            array_slice = true;
            break;
          }

      if (!array_slice) // delete a single element
        {
          vector<tmpvar> idx;
          parent->load_map_indices (e, idx);
          mapvar mvar = parent->getmap (array->referent, e->tok);
          o->newline() << mvar.del (idx) << ";";
        }
      else // delete elements if they match the array slice.
        {
          vardecl* r = array->referent;
          mapvar mvar = parent->getmap (r, e->tok);
          itervar iv = parent->getiter(array);

          // create tmpvars for the array indexes, storing NULL where there is
          // no specific value that the index should be
          vector<tmpvar *> array_slice_vars;
          vector<tmpvar> idx; // for the indexes if the variable is a pmap
          for (unsigned i=0; i<e->indexes.size(); i++)
            {
              if (e->indexes[i])
                {
                  tmpvar *asvar = new tmpvar(parent->gensym(e->indexes[i]->type));
                  parent->c_assign (*asvar, e->indexes[i], "tmp var");
                  array_slice_vars.push_back(asvar);
                  if (mvar.is_parallel())
                    idx.push_back(*asvar);
                }
              else
                {
                  array_slice_vars.push_back(NULL);
                  if (mvar.is_parallel())
                    {
                      tmpvar *asvar = new tmpvar(parent->gensym(r->index_types[i]));
                      idx.push_back(*asvar);
                    }
                }
            }

          if (mvar.is_parallel())
            {
              o->newline() << "if (unlikely(NULL == "
                           << mvar.calculate_aggregate() << ")) {";
              o->newline(1) << "c->last_error = ";
              o->line() << STAP_T_05 << mvar << "\";";
              o->newline() << "c->last_stmt = "
                           << lex_cast_qstring(*e->tok) << ";";
              o->newline() << "goto out;";
              o->newline(-1) << "}";
            }

          // iterate through the map, deleting elements that match the array slice
          string ctr = lex_cast (parent->label_counter++);
          string toplabel = "top_" + ctr;
          string breaklabel = "break_" + ctr;

          o->newline() << iv << " = " << iv.start(mvar) << ";";
          o->newline() << toplabel << ":";

          o->newline(1) << "if (!(" << iv << ")){";
          o->newline(1) << "goto " << breaklabel << ";}";

          // insert the comparison for keys that aren't wildcards
          o->newline(-1) << "if (1"; // in case all are wildcards
          for (unsigned i=0; i<array_slice_vars.size(); i++)
            if (array_slice_vars[i] != NULL)
              {
              if (array_slice_vars[i]->type() == pe_long)
                o->line() << " && " << *array_slice_vars[i] << " == "
                          << iv.get_key(mvar, array_slice_vars[i]->type(), i);
              else if (array_slice_vars[i]->type() == pe_string)
                o->line() << " && strncmp(" << *array_slice_vars[i] << ", "
                          << iv.get_key(mvar, array_slice_vars[i]->type(), i)
                          << ", MAXSTRINGLEN) == 0";
              else
                throw SEMANTIC_ERROR (_("unexpected type"), e->tok);
              }

          o->line() <<  ") {";

          // conditional is true, so delete item and go to the next item
          if (mvar.is_parallel())
            {
              o->indent(1);
              // fills in the wildcards with the current iteration's (map) indexes
              for (unsigned i = 0; i<array_slice_vars.size(); i++)
                if (array_slice_vars[i] == NULL)
                  parent->c_assign (idx[i].value(),
                                    iv.get_key(mvar, r->index_types[i], i),
                                    r->index_types[i], "tmpvar", e->tok);
              o->newline() << iv << " = " << iv.next(mvar) << ";";
              o->newline() << mvar.del(idx) << ";";
            }
          else
            o->newline(1) << iv << " = " << iv.del_next(mvar) << ";";

          o->newline(-1) << "} else";
          o->newline(1) << iv << " = " << iv.next(mvar) << ";";

          o->newline(-1) << "goto " << toplabel << ";";

          o->newline(-1) << breaklabel<< ":";
          o->newline(1) << "; /* dummy statement */";
          o->indent(-1);
        }
    }
  else
    {
      throw SEMANTIC_ERROR(_("cannot delete histogram bucket entries\n"), e->tok);
    }
}


void
c_unparser::visit_delete_statement (delete_statement* s)
{
  bool ln = locks_needed_p (s);

  if (!ln) // unlikely, as delete usually operates on globals
    locks_not_needed_argh(s);

  if (ln && pushdown_lock_p(s))
    emit_lock();
  
  delete_statement_operand_visitor dv (this);
  s->value->visit (&dv);

  if (ln && pushdown_unlock_p(s))
    emit_unlock();

  record_actions(1, s->tok);
}


void
c_unparser::visit_break_statement (break_statement* s)
{
  locks_not_needed_argh(s);

  if (loop_break_labels.empty())
    throw SEMANTIC_ERROR (_("cannot 'break' outside loop"), s->tok);

  record_actions(1, s->tok, true);
  o->newline() << "goto " << loop_break_labels.back() << ";";
}


void
c_unparser::visit_continue_statement (continue_statement* s)
{
  locks_not_needed_argh(s);

  if (loop_continue_labels.empty())
    throw SEMANTIC_ERROR (_("cannot 'continue' outside loop"), s->tok);

  record_actions(1, s->tok, true);
  o->newline() << "goto " << loop_continue_labels.back() << ";";
}



void
c_unparser::visit_literal_string (literal_string* e)
{
  interned_string v = e->value;
  o->line() << '"';
  for (unsigned i=0; i<v.size(); i++)
    // NB: The backslash character is specifically passed through as is.
    // This is because our parser treats "\" as an ordinary character, not
    // an escape sequence, leaving it to the C compiler (and this function)
    // to treat it as such.  If we were to escape it, there would be no way
    // of generating C-level escapes from script code.
    // See also print_format::components_to_string and lex_cast_qstring
    if (v[i] == '"') // or other escapeworthy characters?
      o->line() << '\\' << '"';
    else
      o->line() << v[i];
  o->line() << '"';
}


void
c_unparser::visit_literal_number (literal_number* e)
{
  // This looks ugly, but tries to be warning-free on 32- and 64-bit
  // hosts.
  // NB: this needs to be signed!
  if (e->value == -9223372036854775807LL-1) // PR 5023
    o->line() << "((int64_t)" << (unsigned long long) e->value << "ULL)";
  else
    o->line() << "((int64_t)" << e->value << "LL)";
}


void
c_unparser::visit_embedded_expr (embedded_expr* e)
{
  bool has_defines = false;
  vector<vardecl*> read_defs;
  vector<vardecl*> write_defs;
  for (unsigned i = 0; i < session->globals.size(); i++)
    {
      vardecl* v = session->globals[i];
      if (v->synthetic) continue; /* skip synthetic variables; embedded c can't access them. */
      string name = v->unmangled_name;
      assert (name != "");
      if (e->tagged_p ("/* pragma:read:" + name + " */"))
        {
          has_defines = true;
          c_global_read_def(v);
          read_defs.push_back(v);
        }
      if (e->tagged_p ("/* pragma:write:" + name + " */"))
        {
          has_defines = true;
          c_global_write_def(v);
          write_defs.push_back(v);
        }
    }

  if (has_defines)
    o->newline();

  o->line() << "(";

  // Automatically add a call to assert_is_myproc to any code tagged with
  // /* myproc-unprivileged */
  if (e->tagged_p ("/* myproc-unprivileged */"))
    o->line() << "({ assert_is_myproc(); }), ";

  if (e->type == pe_long)
    o->line() << "((int64_t) (" << e->code << "))";
  else if (e->type == pe_string)
    o->line() << "((const char *) (" << e->code << "))";
  else
    throw SEMANTIC_ERROR (_("expected numeric or string type"), e->tok);

  o->line() << ")";

  for (vector<vardecl*>::const_iterator it = read_defs.begin(); it != read_defs.end(); ++it)
    c_global_read_undef(*it);
  for (vector<vardecl*>::const_iterator it = write_defs.begin(); it != write_defs.end(); ++it)
    c_global_write_undef(*it);

  if (has_defines)
    o->newline();
}


void
c_unparser::visit_binary_expression (binary_expression* e)
{
  if (e->type != pe_long ||
      e->left->type != pe_long ||
      e->right->type != pe_long)
    throw SEMANTIC_ERROR (_("expected numeric types"), e->tok);

  if (e->op == "+" ||
      e->op == "-" ||
      e->op == "*" ||
      e->op == "&" ||
      e->op == "|" ||
      e->op == "^")
    {
      o->line() << "((";
      e->left->visit (this);
      o->line() << ") " << e->op << " (";
      e->right->visit (this);
      o->line() << "))";
    }
  else if (e->op == ">>" ||
           e->op == "<<")
    {
      o->line() << "((int64_t)(";
      e->left->visit (this);
      o->line() << ") " << e->op << " ((";
      e->right->visit (this);
      o->line() << ") & 63))";
    }
  else if (e->op == ">>>")
    {
      o->line() << "(int64_t)((uint64_t)(";
      e->left->visit (this);
      o->line() << ") >> ((";
      e->right->visit (this);
      o->line() << ") & 63))";
    }
  else if (e->op == "/" ||
           e->op == "%")
    {
      // % and / need a division-by-zero check; and thus two temporaries
      // for proper evaluation order
      tmpvar left = gensym (pe_long);
      tmpvar right = gensym (pe_long);

      o->line() << "({";
      o->indent(1);

      c_assign (left, e->left, "division");
      c_assign (right, e->right, "division");

      o->newline() << "if (unlikely(!" << right << ")) {";
      o->newline(1) << "c->last_error = ";
      o->line() << STAP_T_03;
      o->newline() << "c->last_stmt = " << lex_cast_qstring(*e->tok) << ";";
      o->newline() << "goto out;";
      o->newline(-1) << "}";
      o->newline() << ((e->op == "/") ? "_stp_div64" : "_stp_mod64")
		   << " (NULL, " << left << ", " << right << ");";

      o->newline(-1) << "})";
    }
  else
    throw SEMANTIC_ERROR (_F("operator %s not yet implemented", string(e->op).c_str()), e->tok);
}


void
c_unparser::visit_unary_expression (unary_expression* e)
{
  if (e->type != pe_long ||
      e->operand->type != pe_long)
    throw SEMANTIC_ERROR (_("expected numeric types"), e->tok);

  if (e->op == "-")
    {
      // NB: Subtraction is special, since negative literals in the
      // script language show up as unary negations over positive
      // literals here.  This makes it "exciting" for emitting pure
      // C since: - 0x8000_0000_0000_0000 ==> - (- 9223372036854775808)
      // This would constitute a signed overflow, which gcc warns on
      // unless -ftrapv/-J are in CFLAGS - which they're not.

      o->line() << "(int64_t)(0 " << e->op << " (uint64_t)(";
      e->operand->visit (this);
      o->line() << "))";
    }
  else
    {
      o->line() << "(" << e->op << " (";
      e->operand->visit (this);
      o->line() << "))";
    }
}

void
c_unparser::visit_logical_or_expr (logical_or_expr* e)
{
  if (e->type != pe_long ||
      e->left->type != pe_long ||
      e->right->type != pe_long)
    throw SEMANTIC_ERROR (_("expected numeric types"), e->tok);

  o->line() << "((";
  e->left->visit (this);
  o->line() << ") " << e->op << " (";
  e->right->visit (this);
  o->line() << "))";
}


void
c_unparser::visit_logical_and_expr (logical_and_expr* e)
{
  if (e->type != pe_long ||
      e->left->type != pe_long ||
      e->right->type != pe_long)
    throw SEMANTIC_ERROR (_("expected numeric types"), e->tok);

  o->line() << "((";
  e->left->visit (this);
  o->line() << ") " << e->op << " (";
  e->right->visit (this);
  o->line() << "))";
}


void
c_unparser::visit_array_in (array_in* e)
{
  symbol *array;
  hist_op *hist;
  classify_indexable (e->operand->base, array, hist);

  if (array)
    {
      stmt_expr block(*this);

      tmpvar res = gensym (pe_long);
      vector<tmpvar> idx;

      // determine if the array index contains an asterisk
      bool array_slice = false;
      for (unsigned i = 0; i < e->operand->indexes.size(); i ++)
        if (e->operand->indexes[i] == NULL)
          {
            array_slice = true;
            break;
          }

      if (!array_slice) // checking for membership of a specific element
        {
          load_map_indices (e->operand, idx);
          // o->newline() << "c->last_stmt = " << lex_cast_qstring(*e->tok) << ";";

          mapvar mvar = getmap (array->referent, e->tok);
          c_assign (res, mvar.exists(idx), e->tok);

          o->newline() << res << ";";
        }
      else
        {
          // create tmpvars for the array indexes, storing NULL where there is
          // no specific value that the index should be
          vector<tmpvar *> array_slice_vars;
          for (unsigned i=0; i<e->operand->indexes.size(); i++)
            {
              if (e->operand->indexes[i])
                {
                  tmpvar *asvar = new tmpvar(gensym(e->operand->indexes[i]->type));
                  c_assign (*asvar, e->operand->indexes[i], "tmp var");
                  array_slice_vars.push_back(asvar);
                }
              else
                array_slice_vars.push_back(NULL);
            }

          mapvar mvar = getmap (array->referent, e->operand->tok);
          itervar iv = getiter(array);
          vector<tmpvar> idx;

          // we may not need to aggregate if we're already in a foreach
          bool pre_agg = (aggregations_active.count(mvar.value()) > 0);
          if (mvar.is_parallel() && !pre_agg)
            {
              o->newline() << "if (unlikely(NULL == "
                           << mvar.calculate_aggregate() << ")) {";
              o->newline(1) << "c->last_error = ";
              o->line() << STAP_T_05 << mvar << "\";";
              o->newline() << "c->last_stmt = " << lex_cast_qstring(*e->tok) << ";";
              o->newline() << "goto out;";
              o->newline(-1) << "}";
            }

          string ctr = lex_cast (label_counter++);
          string toplabel = "top_" + ctr;
          string contlabel = "continue_" + ctr;
          string breaklabel = "break_" + ctr;

          o->newline() << iv << " = " << iv.start(mvar) << ";";
          c_assign (res, "0", e->tok); // set the default to 0

          o->newline() << toplabel << ":";

          o->newline(1) << "if (!(" << iv << "))";
          o->newline(1) << "goto " << breaklabel << ";";

          // generate code for comparing the keys to the index slice
          o->newline(-1) << "if (1"; // in case all are wildcards
          for (unsigned i=0; i<array_slice_vars.size(); i++)
            {
              if (array_slice_vars[i] != NULL)
                {
                if (array_slice_vars[i]->type() == pe_long)
                  o->line() << " && " << *array_slice_vars[i] << " == "
                            << iv.get_key(mvar, array_slice_vars[i]->type(), i);
                else if (array_slice_vars[i]->type() == pe_string)
                  o->line() << " && strncmp(" << *array_slice_vars[i] << ", "
                            << iv.get_key(mvar, array_slice_vars[i]->type(), i)
                            << ", MAXSTRINGLEN) == 0";
                else
                  throw SEMANTIC_ERROR (_("unexpected type"), e->tok);
                }
            }
          o->line() <<  "){";
          o->indent(1);
          // conditional is true, so set res and go to break
          c_assign (res, "1", e->tok);
          o->newline() << "goto " << breaklabel << ";";
          o->newline(-1) << "}";

          // else, keep iterating
          o->newline() << iv << " = " << iv.next(mvar) << ";";
          o->newline() << "goto " << toplabel << ";";

          o->newline(-1) << breaklabel<< ":";
          o->newline(1) << "; /* dummy statement */";
          o->newline(-1) << res << ";";
        }

    }
  else
    {
      // By definition:
      //
      // 'foo in @hist_op(...)'  is true iff
      // '@hist_op(...)[foo]'    is nonzero
      //
      // so we just delegate to the latter call, since int64_t is also
      // our boolean type.
      e->operand->visit(this);
    }
}

void
c_unparser::visit_regex_query (regex_query* e)
{
  o->line() << "(";
  o->indent(1);
  o->newline();
  if (e->op == "!~") o->line() << "!";
  stapdfa *dfa = session->dfas[e->right->value];
  dfa->emit_matchop_start (o);
  e->left->visit(this);
  dfa->emit_matchop_end (o);
  o->newline(-1) << ")";
}

void
c_unparser::visit_compound_expression(compound_expression* e)
{
  o->line() << "(";
  e->left->visit (this);
  o->line() << ", ";
  e->right->visit (this);
  o->line() << ")";
}

void
c_unparser::visit_comparison (comparison* e)
{
  o->line() << "(";

  if (e->left->type == pe_string)
    {
      if (e->right->type != pe_string)
        throw SEMANTIC_ERROR (_("expected string types"), e->tok);

      // PR13283 indicated that we may need a temporary variable to
      // store the operand strings, if e.g. they are both references
      // into function call __retvalue's, which overlap in memory.
      // ... but we now handle that inside the function call machinery,
      // which always returns an allocated temporary variable.

      o->line() << "(strncmp ((";
      e->left->visit (this);
      o->line() << "), (";
      e->right->visit (this);
      o->line() << "), MAXSTRINGLEN) " << e->op << " 0)";
    }
  else if (e->left->type == pe_long)
    {
      if (e->right->type != pe_long)
        throw SEMANTIC_ERROR (_("expected numeric types"), e->tok);

      o->line() << "((";
      e->left->visit (this);
      o->line() << ") " << e->op << " (";
      e->right->visit (this);
      o->line() << "))";
    }
  else
    throw SEMANTIC_ERROR (_("unexpected type"), e->left->tok);

  o->line() << ")";
}


void
c_unparser::visit_concatenation (concatenation* e)
{
  if (e->op != ".")
    throw SEMANTIC_ERROR (_("unexpected concatenation operator"), e->tok);

  if (e->type != pe_string ||
      e->left->type != pe_string ||
      e->right->type != pe_string)
    throw SEMANTIC_ERROR (_("expected string types"), e->tok);

  tmpvar t = gensym (e->type);

  o->line() << "({ ";
  o->indent(1);
  // o->newline() << "c->last_stmt = " << lex_cast_qstring(*e->tok) << ";";
  c_assign (t.value(), e->left, "assignment");
  c_strcat (t.value(), e->right);
  o->newline() << t << ";";
  o->newline(-1) << "})";
}


void
c_unparser::visit_ternary_expression (ternary_expression* e)
{
  if (e->cond->type != pe_long)
    throw SEMANTIC_ERROR (_("expected numeric condition"), e->cond->tok);

  if (e->truevalue->type != e->falsevalue->type ||
      e->type != e->truevalue->type ||
      (e->truevalue->type != pe_long && e->truevalue->type != pe_string))
    throw SEMANTIC_ERROR (_("expected matching types"), e->tok);

  o->line() << "((";
  e->cond->visit (this);
  o->line() << ") ? (";
  e->truevalue->visit (this);
  o->line() << ") : (";
  e->falsevalue->visit (this);
  o->line() << "))";
}


void
c_unparser::visit_assignment (assignment* e)
{
  if (e->op == "<<<")
    {
      if (e->type != pe_long)
	throw SEMANTIC_ERROR (_("non-number <<< expression"), e->tok);

      if (e->left->type != pe_stats)
	throw SEMANTIC_ERROR (_("non-stats left operand to <<< expression"), e->left->tok);

      if (e->right->type != pe_long)
	throw SEMANTIC_ERROR (_("non-number right operand to <<< expression"), e->right->tok);

    }
  else
    {
      if (e->type != e->left->type)
	throw SEMANTIC_ERROR (_("type mismatch"), e->tok, e->left->tok);
      if (e->right->type != e->left->type)
	throw SEMANTIC_ERROR (_("type mismatch"), e->right->tok, e->left->tok);
    }

  c_unparser_assignment tav (this, e->op, e->right);
  e->left->visit (& tav);
}


void
c_unparser::visit_pre_crement (pre_crement* e)
{
  if (e->type != pe_long ||
      e->type != e->operand->type)
    throw SEMANTIC_ERROR (_("expected numeric type"), e->tok);

  c_unparser_assignment tav (this, e->op, false);
  e->operand->visit (& tav);
}


void
c_unparser::visit_post_crement (post_crement* e)
{
  if (e->type != pe_long ||
      e->type != e->operand->type)
    throw SEMANTIC_ERROR (_("expected numeric type"), e->tok);

  c_unparser_assignment tav (this, e->op, true);
  e->operand->visit (& tav);
}


void
c_unparser::visit_symbol (symbol* e)
{
  assert (e->referent != 0);
  vardecl* r = e->referent;

  if (r->index_types.size() != 0)
    throw SEMANTIC_ERROR (_("invalid reference to array"), e->tok);

  var v = getvar(r, e->tok);
  o->line() << v;
}

void
c_unparser::visit_target_register (target_register* e)
{
  o->line() << (e->userspace_p ? "u_fetch_register(" : "k_fetch_register(")
	    << e->regno
	    << ")";
}

void
c_unparser::visit_target_deref (target_deref* e)
{
  if (e->signed_p)
    {
      switch (e->size)
	{
	case 1:
	  o->line() << "(int64_t)(int8_t)";
	  break;
	case 2:
	  o->line() << "(int64_t)(int16_t)";
	  break;
	case 4:
	  o->line() << "(int64_t)(int32_t)";
	  break;
	case 8:
	  break;
	default:
	  abort();
	}
    }
  o->line() << (e->userspace_p ? "uderef(" : "kderef(")
	    << e->size << ", (";
  e->addr->visit (this);
  o->line() << "))";
}

void
c_unparser::visit_target_bitfield (target_bitfield*)
{
  // These are all expanded much earlier.
  abort();
}

// Assignment expansion is tricky.
//
// Because assignments are nestable expressions, we have
// to emit C constructs that are nestable expressions too.
// We have to evaluate the given expressions the proper number of times,
// including array indices.
// We have to lock the lvalue (if global) against concurrent modification,
// especially with modify-assignment operations (+=, ++).
// We have to check the rvalue (for division-by-zero checks).

// In the normal "pre=false" case, for (A op B) emit:
// ({ tmp = B; check(B); lock(A); res = A op tmp; A = res; unlock(A); res; })
// In the "pre=true" case, emit instead:
// ({ tmp = B; check(B); lock(A); res = A; A = res op tmp; unlock(A); res; })
//
// (op is the plain operator portion of a combined calculate/assignment:
// "+" for "+=", and so on.  It is in the "macop" variable below.)
//
// For array assignments, additional temporaries are used for each
// index, which are expanded before the "tmp=B" expression, in order
// to consistently order evaluation of lhs before rhs.
//

void
c_unparser_assignment::prepare_rvalue (interned_string op,
				       tmpvar & rval,
				       token const * tok)
{
  if (rvalue)
    parent->c_assign (rval, rvalue, "assignment");
  else
    {
      if (op == "++" || op == "--")
	// Here is part of the conversion proccess of turning "x++" to
	// "x += 1".
        rval.override("1");
      else
        throw SEMANTIC_ERROR (_("need rvalue for assignment"), tok);
    }
}

void
c_unparser_assignment::visit_symbol (symbol *e)
{
  stmt_expr block(*parent);
  translator_output* o = parent->o;

  assert (e->referent != 0);
  if (e->referent->index_types.size() != 0)
    throw SEMANTIC_ERROR (_("unexpected reference to array"), e->tok);

  // o->newline() << "c->last_stmt = " << lex_cast_qstring(*e->tok) << ";";
  exp_type ty = rvalue ? rvalue->type : e->type;
  tmpvar rval = parent->gensym (ty);
  tmpvar res = parent->gensym (ty);

  prepare_rvalue (op, rval, e->tok);

  var lvar = parent->getvar (e->referent, e->tok);
  c_assignop (res, lvar, rval, e->tok);

  o->newline() << res << ";";
}

void
c_unparser_assignment::visit_target_register (target_register* e)
{
  exp_type ty = rvalue ? rvalue->type : e->type;
  assert(ty == pe_long);

  tmpvar rval = parent->gensym (pe_long);
  prepare_rvalue (op, rval, e->tok);

  // Given how target_registers are created in loc2stap.cxx,
  // we should never see anything other than simple assignment.
  assert(op == "=");

  translator_output* o = parent->o;
  o->newline() << (e->userspace_p ? "u_store_register(" : "k_store_register(")
	       << e->regno << ", " << rval << ")";
}

void
c_unparser_assignment::visit_target_deref (target_deref* e)
{
  exp_type ty = rvalue ? rvalue->type : e->type;
  assert(ty == pe_long);

  tmpvar rval = parent->gensym (pe_long);

  prepare_rvalue (op, rval, e->tok);

  // Given how target_deref are created in loc2stap.cxx,
  // we should never see anything other than simple assignment.
  assert(op == "=");

  translator_output* o = parent->o;
  o->newline() << (e->userspace_p ? "store_uderef(" : "store_kderef(")
	       << e->size << ", (";
  e->addr->visit (parent);
  o->line() << "), " << rval << ")";
}

void
c_unparser::visit_target_symbol (target_symbol* e)
{
  throw SEMANTIC_ERROR(_("cannot translate general target-symbol expression"), e->tok);
}


void
c_unparser::visit_atvar_op (atvar_op* e)
{
  throw SEMANTIC_ERROR(_("cannot translate general @var expression"), e->tok);
}


void
c_unparser::visit_cast_op (cast_op* e)
{
  throw SEMANTIC_ERROR(_("cannot translate general @cast expression"), e->tok);
}


void
c_unparser::visit_autocast_op (autocast_op* e)
{
  throw SEMANTIC_ERROR(_("cannot translate general dereference expression"), e->tok);
}


void
c_unparser::visit_defined_op (defined_op* e)
{
  throw SEMANTIC_ERROR(_("cannot translate general @defined expression"), e->tok);
}


void
c_unparser::visit_probewrite_op (probewrite_op* e)
{
  throw SEMANTIC_ERROR(_("cannot translate general @probewrite expression"), e->tok);
}


void
c_unparser::visit_entry_op (entry_op* e)
{
  throw SEMANTIC_ERROR(_("cannot translate general @entry expression"), e->tok);
}


void
c_unparser::visit_perf_op (perf_op* e)
{
  throw SEMANTIC_ERROR(_("cannot translate general @perf expression"), e->tok);
}


void
c_unparser::load_map_indices(arrayindex *e,
			     vector<tmpvar> & idx)
{
  symbol *array;
  hist_op *hist;
  classify_indexable (e->base, array, hist);

  if (array)
    {
      idx.clear();

      assert (array->referent != 0);
      vardecl* r = array->referent;

      if (r->index_types.size() == 0 ||
	  r->index_types.size() != e->indexes.size())
	throw SEMANTIC_ERROR (_("invalid array reference"), e->tok);

      for (unsigned i=0; i<r->index_types.size(); i++)
	{
	  if (r->index_types[i] != e->indexes[i]->type)
	    throw SEMANTIC_ERROR (_("array index type mismatch"), e->indexes[i]->tok);

	  tmpvar ix = gensym (r->index_types[i]);
	  c_assign (ix, e->indexes[i], "array index copy");
	  idx.push_back (ix);
	}
    }
  else
    {
      assert (e->indexes.size() == 1);
      assert (e->indexes[0]->type == pe_long);
      tmpvar ix = gensym (pe_long);
      c_assign (ix, e->indexes[0], "array index copy");
      idx.push_back(ix);
    }
}


var*
c_unparser::load_aggregate (expression *e, aggvar & agg)
{
  symbol *sym = get_symbol_within_expression (e);

  if (sym->referent->type != pe_stats)
    throw SEMANTIC_ERROR (_("unexpected aggregate of non-statistic"), sym->tok);

  var *v;
  if (sym->referent->arity == 0)
    {
      v = new var(getvar(sym->referent, sym->tok));
      // o->newline() << "c->last_stmt = " << lex_cast_qstring(*sym->tok) << ";";
      o->newline() << agg << " = _stp_stat_get (" << *v << ", 0);";
    }
  else
    {
      mapvar *mv = new mapvar(getmap(sym->referent, sym->tok));
      v = mv;

      arrayindex *arr = NULL;
      if (!expression_is_arrayindex (e, arr))
	throw SEMANTIC_ERROR(_("unexpected aggregate of non-arrayindex"), e->tok);

      // If we have a foreach_loop value, we don't need to index the map
      string agg_value;
      if (get_foreach_loop_value(arr, agg_value))
        o->newline() << agg << " = " << agg_value << ";";
      else
        {
          vector<tmpvar> idx;
          load_map_indices (arr, idx);
          // o->newline() << "c->last_stmt = " << lex_cast_qstring(*sym->tok) << ";";
	  bool pre_agg = (aggregations_active.count(mv->value()) > 0);
          o->newline() << agg << " = " << mv->get(idx, pre_agg) << ";";
        }
    }

  return v;
}


string
c_unparser::histogram_index_check(var & base, tmpvar & idx) const
{
  return "((" + idx.value() + " >= 0)"
    + " && (" + idx.value() + " < " + base.buckets() + "))";
}


void
c_unparser::visit_arrayindex (arrayindex* e)
{
  // If we have a foreach_loop value, use it and call it a day!
  string ai_value;
  if (get_foreach_loop_value(e, ai_value))
    {
      o->line() << ai_value;
      return;
    }

  symbol *array;
  hist_op *hist;
  classify_indexable (e->base, array, hist);

  if (array)
    {
      // Visiting an statistic-valued array in a non-lvalue context is prohibited.
      if (array->referent->type == pe_stats)
	throw SEMANTIC_ERROR (_("statistic-valued array in rvalue context"), e->tok);

      stmt_expr block(*this);

      vector<tmpvar> idx;
      load_map_indices (e, idx);
      tmpvar res = gensym (e->type);

      mapvar mvar = getmap (array->referent, e->tok);
      // o->newline() << "c->last_stmt = " << lex_cast_qstring(*e->tok) << ";";
      c_assign (res, mvar.get(idx), e->tok);

      o->newline() << res << ";";
    }
  else
    {
      // Note: this is a slightly tricker-than-it-looks allocation of
      // temporaries. The reason is that we're in the branch handling
      // histogram-indexing, and the histogram might be build over an
      // indexable entity itself. For example if we have:
      //
      //  global foo
      //  ...
      //  foo[getpid(), geteuid()] <<< 1
      //  ...
      //  print @log_hist(foo[pid, euid])[bucket]
      //
      // We are looking at the @log_hist(...)[bucket] expression, so
      // allocating one tmpvar for calculating bucket (the "index" of
      // this arrayindex expression), and one tmpvar for storing the
      // result in, just as normal.
      //
      // But we are *also* going to call load_aggregate on foo, which
      // will itself require tmpvars for each of its indices. Since
      // this is not handled by delving into the subexpression (it
      // would be if hist were first-class in the type system, but
      // it's not) we we allocate all the tmpvars used in such a
      // subexpression up here: first our own aggvar, then our index
      // (bucket) tmpvar, then all the index tmpvars of our
      // pe_stat-valued subexpression, then our result.

      assert(hist);
      stmt_expr block(*this);

      aggvar agg = gensym_aggregate ();

      vector<tmpvar> idx;
      load_map_indices (e, idx);
      tmpvar res = gensym (e->type);

      // These should have faulted during elaboration if not true.
      if (idx.size() != 1 || idx[0].type() != pe_long)
	throw SEMANTIC_ERROR(_("Invalid indexing of histogram"), e->tok);

      var *v = load_aggregate(hist->stat, agg);
      v->assert_hist_compatible(*hist);

      o->newline() << "c->last_stmt = " << lex_cast_qstring(*e->tok) << ";";

      // PR 2142+2610: empty aggregates
      o->newline() << "if (unlikely (" << agg.value() << " == NULL)"
                   << " || " <<  agg.value() << "->count == 0) {";
      o->newline(1) << "c->last_error = ";
      o->line() << STAP_T_06;
      o->newline() << "goto out;";
      o->newline(-1) << "} else {";
      o->newline(1) << "if (" << histogram_index_check(*v, idx[0]) << ")";
      o->newline(1)  << res << " = " << agg << "->histogram[" << idx[0] << "];";
      o->newline(-1) << "else {";
      o->newline(1)  << "c->last_error = ";
      o->line() << STAP_T_07;
      o->newline() << "goto out;";
      o->newline(-1) << "}";

      o->newline(-1) << "}";
      o->newline() << res << ";";

      delete v;
    }
}


void
c_unparser_assignment::visit_arrayindex (arrayindex *e)
{
  symbol *array;
  hist_op *hist;
  classify_indexable (e->base, array, hist);

  if (array)
    {

      stmt_expr block(*parent);

      translator_output *o = parent->o;

      if (array->referent->index_types.size() == 0)
	throw SEMANTIC_ERROR (_("unexpected reference to scalar"), e->tok);

      vector<tmpvar> idx;
      parent->load_map_indices (e, idx);
      exp_type ty = rvalue ? rvalue->type : e->type;
      tmpvar rvar = parent->gensym (ty);
      tmpvar lvar = parent->gensym (ty);
      tmpvar res = parent->gensym (ty);

      // NB: because these expressions are nestable, emit this construct
      // thusly:
      // ({ tmp0=(idx0); ... tmpN=(idxN); rvar=(rhs); lvar; res;
      //    lock (array);
      //    lvar = get (array,idx0...N); // if necessary
      //    assignop (res, lvar, rvar);
      //    set (array, idx0...N, lvar);
      //    unlock (array);
      //    res; })
      //
      // we store all indices in temporary variables to avoid nasty
      // reentrancy issues that pop up with nested expressions:
      // e.g. ++a[a[c]=5] could deadlock
      //
      //
      // There is an exception to the above form: if we're doign a <<< assigment to
      // a statistic-valued map, there's a special form we follow:
      //
      // ({ tmp0=(idx0); ... tmpN=(idxN); rvar=(rhs);
      //    *no need to* lock (array);
      //    _stp_map_add_stat (array, idx0...N, rvar);
      //    *no need to* unlock (array);
      //    rvar; })
      //
      // To simplify variable-allocation rules, we assign rvar to lvar and
      // res in this block as well, even though they are technically
      // superfluous.

      prepare_rvalue (op, rvar, e->tok);

      if (op == "<<<")
	{
	  assert (e->type == pe_stats);
	  assert (rvalue->type == pe_long);

	  mapvar mvar = parent->getmap (array->referent, e->tok);
	  o->newline() << "c->last_stmt = " << lex_cast_qstring(*e->tok) << ";";
	  o->newline() << mvar.add (idx, rvar) << ";";
          res = rvar;
	  // no need for these dummy assignments
	  // o->newline() << lvar << " = " << rvar << ";";
	  // o->newline() << res << " = " << rvar << ";";
	}
      else
	{
	  mapvar mvar = parent->getmap (array->referent, e->tok);
	  o->newline() << "c->last_stmt = " << lex_cast_qstring(*e->tok) << ";";
	  if (op != "=") // don't bother fetch slot if we will just overwrite it
	    parent->c_assign (lvar, mvar.get(idx), e->tok);
	  c_assignop (res, lvar, rvar, e->tok);
	  o->newline() << mvar.set (idx, lvar) << ";";
	}

      o->newline() << res << ";";
    }
  else
    {
      throw SEMANTIC_ERROR(_("cannot assign to histogram buckets"), e->tok);
    }
}


void
c_unparser::visit_functioncall (functioncall* e)
{
  assert (!e->referents.empty());

  stmt_expr block(*this);

  vector<bool> cp_arg(e->args.size(), true);
  for (unsigned fd = 0; fd < e->referents.size(); fd++)
    {
      functiondecl* r = e->referents[fd];

      if (r->formal_args.size() != e->args.size())
        throw SEMANTIC_ERROR (_("invalid length argument list"), e->tok);

      for (unsigned i = 0; i < e->args.size(); i++)
        {
          if (r->formal_args[i]->type != e->args[i]->type)
            throw SEMANTIC_ERROR (_("function argument type mismatch"),
                                  e->args[i]->tok, r->formal_args[i]->tok);
        }

      // all alternative functions must be compatible if passing by
      // char pointer
      for (unsigned i = 0; i < r->formal_args.size(); i++)
        {
          if (!r->formal_args[i]->char_ptr_arg)
            cp_arg[i] = false;
        }
    }

  // NB: we store all actual arguments in temporary variables,
  // to avoid colliding sharing of context variables with
  // nested function calls: f(f(f(1)))

  // compute actual arguments
  vector<tmpvar> tmp;
  for (unsigned i=0; i<e->args.size(); i++)
    {
      tmpvar t = gensym(e->args[i]->type);

      symbol *sym_out;
      if (cp_arg[i] && e->args[i]->is_symbol(sym_out)
          && is_local(sym_out->referent, sym_out->tok))
        t.override(getvar(sym_out->referent, sym_out->tok).value());
      else
        c_assign (t, e->args[i],
                  _("function actual argument evaluation"));
      tmp.push_back(t);
    }

  // overloading execution logic for functioncall:
  //
  // - copy in computed function arguments for overload_0
  // - make the functioncall for overload_0 and overwrite return variable
  // - if context next flag is not set, goto fc_end
  //                    *
  //                    *
  //                    *
  // - copy in computed function arguments for overload_n
  // - make the functioncall for overload_n and overwrite return variable
  // fc_end:
  // - yield return value

  // store the return value after the function arguments have been worked out
  // to avoid problems that may occure with nesting.
  tmpvar tmp_ret = gensym (e->type);

  // NB: as per PR13283, it's important we always allocate a distinct
  // temporary value to receive the return value.  (We can pass its
  // address by reference to the function if we like.)
  
  bool yield = false; // set if statement expression is non void

  for (unsigned fd = 0; fd < e->referents.size(); fd++)
    {
      functiondecl* r = e->referents[fd];

      // copy in actual arguments
      for (unsigned i=0; i<e->args.size(); i++)
        {
          if (r->formal_args[i]->char_ptr_arg)
            o->newline() << "c->locals[c->nesting+1]." + c_funcname (r->name) + "."
                            + c_localname (r->formal_args[i]->name) << " = "
                         << tmp[i].value() << ";";
          else
            c_assign ("c->locals[c->nesting+1]." +
                      c_funcname (r->name) + "." +
                      c_localname (r->formal_args[i]->name),
                      tmp[i].value(),
                      e->args[i]->type,
                      "function actual argument copy",
                      e->args[i]->tok);
        }
      // optimized string returns need a local storage pointer.
      bool pointer_ret = (e->type == pe_string && !session->unoptimized);
      if (pointer_ret)
        {
          if (e == assigned_functioncall)
            tmp_ret.override (*assigned_functioncall_retval);
          o->newline() << "c->locals[c->nesting+1]." << c_funcname(r->name)
                       << ".__retvalue = &" << tmp_ret.value() << "[0];";
        }

      // call function
      o->newline() << "c->last_stmt = " << lex_cast_qstring(*e->tok) << ";";
      o->newline() << c_funcname (r->name) << " (c);";
      o->newline() << "if (unlikely(c->last_error || c->aborted)) goto out;";

      if (!already_checked_action_count && !session->suppress_time_limits
          && !session->unoptimized)
        {
          max_action_info mai (*session);
          r->body->visit(&mai);
          // if an unoptimized function/probe called an optimized function, then
          // increase the counter, since the subtraction isn't done within an
          // optimized function
          if(mai.statement_count_finite())
            record_actions (mai.statement_count, e->tok, true);
        }

      if (r->type == pe_unknown || tmp_ret.is_overridden())
        // If we passed typechecking with pe_unknown, or if we directly assigned
        // the functioncall retval, then nothing will use this return value
        yield = false;
      else
        {
          if (!pointer_ret)
            {
              // overwrite the previous return value
              string value = "c->locals[c->nesting+1]." + c_funcname(r->name) + ".__retvalue";
              c_assign (tmp_ret.value(), value, e->type,
                        _("function return result evaluation"), e->tok);
            }
          yield = true;
        }

      if (e->referents.size() > 1 && r != e->referents.back())
        // branch to end of the enclosing statement-expression if one of the
        // function alternatives is selected
        o->newline() << "if (!c->next) goto fc_end_" << fc_counter << ";";
    }

  if (e->referents.size() > 1)
    {
      // end label and increment counter
      o->newline() << "fc_end_" << fc_counter++ << ":";
    }

  if (e->referents.back()->has_next)
    // check for aborted return from function; this could happen from non-overloaded ones too
    o->newline()
      << "if (unlikely(c->next)) { "
      << "c->last_stmt = " << lex_cast_qstring(*e->tok) << "; "
      << "c->last_error = \"all functions exhausted\"; goto out; }";

  // return result from retvalue slot NB: this must be last, for the
  // enclosing statement-expression ({ ... }) to carry this value.
  if (yield)
    o->newline() << tmp_ret.value() << ";";
  else
    o->newline() << "(void) 0;";
}


// returns true if it should print directly to a stream
static bool
preprocess_print_format(print_format* e, vector<tmpvar>& tmp,
                        vector<print_format::format_component>& components,
                        string& format_string)
{
  if (e->print_with_format)
    {
      format_string = e->raw_components;
      components = e->components;
    }
  else
    {
      string delim;
      if (e->print_with_delim)
	{
	  stringstream escaped_delim;
	  interned_string dstr = e->delimiter;
	  for (interned_string::const_iterator i = dstr.begin();
	       i != dstr.end(); ++i)
	    {
	      if (*i == '%')
		escaped_delim << '%';
	      escaped_delim << *i;
	    }
	  delim = escaped_delim.str();
	}

      // Synthesize a print-format string if the user didn't
      // provide one; the synthetic string simply contains one
      // directive for each argument.
      stringstream format;
      for (unsigned i = 0; i < e->args.size(); ++i)
	{
	  if (i > 0 && e->print_with_delim)
	    format << delim;
	  switch (e->args[i]->type)
	    {
	    default:
	    case pe_unknown:
	      throw SEMANTIC_ERROR(_("cannot print unknown expression type"), e->args[i]->tok);
	    case pe_stats:
	      throw SEMANTIC_ERROR(_("cannot print a raw stats object"), e->args[i]->tok);
	    case pe_long:
	      format << "%d";
	      break;
	    case pe_string:
	      format << "%s";
	      break;
	    }
	}
      if (e->print_with_newline)
	format << "\\n";

      format_string = format.str();
      components = print_format::string_to_components(format_string);
    }


  // optimize simple string prints
  if (e->print_to_stream && tmp.size() <= 1
      && format_string.find("%%") == string::npos)
    {
      // just a plain format string itself, or
      // simply formatting a string verbatim.
      if (tmp.empty() || format_string == "%s")
	return true;

      // just a string without formatting plus newline, and it's been
      // overridden with a literal, then we can token-paste the newline.
      // TODO could allow any prefix and suffix around "%s", C-escaped.
      if (tmp[0].is_overridden() && format_string == "%s\\n")
	{
	  tmp[0].override(tmp[0].value() + "\"\\n\"");
	  return true;
	}
    }

  return false;
}


void
c_unparser::visit_print_format (print_format* e)
{
  // Print formats can contain a general argument list *or* a special
  // type of argument which gets its own processing: a single,
  // non-format-string'ed, histogram-type stat_op expression.

  if (e->hist)
    {
      stmt_expr block(*this);
      aggvar agg = gensym_aggregate ();

      var *v = load_aggregate(e->hist->stat, agg);
      v->assert_hist_compatible(*e->hist);

      {
        // PR 2142+2610: empty aggregates
        o->newline() << "if (unlikely (" << agg.value() << " == NULL)"
                     << " || " <<  agg.value() << "->count == 0) {";
        o->newline(1) << "c->last_error = ";
        o->line() << STAP_T_06;
	o->newline() << "c->last_stmt = " << lex_cast_qstring(*e->tok) << ";";
	o->newline() << "goto out;";
        o->newline(-1) << "} else";
        if (e->print_to_stream)
          {
            o->newline(1) << "_stp_stat_print_histogram (" << v->hist() << ", " << agg.value() << ");";
            o->indent(-1);
          }
        else
          {
            exp_type ty = pe_string;
            tmpvar res = gensym (ty);
            o->newline(1) << "_stp_stat_print_histogram_buf (" << res.value() << ", MAXSTRINGLEN, " << v->hist() << ", " << agg.value() << ");";
            o->newline(-1) << res.value() << ";";
          }
      }

      delete v;
    }
  else
    {
      stmt_expr block(*this);

      // PR10750: Enforce a reasonable limit on # of varargs
      // 32 varargs leads to max 256 bytes on the stack
      if (e->args.size() > 32)
        throw SEMANTIC_ERROR(_NF("additional argument to print", "too many arguments to print (%zu)",
                                e->args.size(), e->args.size()), e->tok);

      // Compute actual arguments
      vector<tmpvar> tmp;

      for (unsigned i=0; i<e->args.size(); i++)
	{
	  tmpvar t = gensym(e->args[i]->type);
	  c_assign (t, e->args[i],
		    "print format actual argument evaluation");
	  tmp.push_back(t);
	}

      // Allocate the result
      exp_type ty = e->print_to_stream ? pe_long : pe_string;
      tmpvar res = gensym (ty);

      // Munge so we can find our compiled printf
      vector<print_format::format_component> components;
      string format_string, format_string_out;
      bool use_print = preprocess_print_format(e, tmp, components, format_string);
      format_string_out = print_format::components_to_string(components);

      // Make the [s]printf call...

      // Generate code to check that any pointer arguments are actually accessible.
      size_t arg_ix = 0;
      for (unsigned i = 0; i < components.size(); ++i) {
	if (components[i].type == print_format::conv_literal)
	  continue;

	/* Take note of the width and precision arguments, if any.  */
	int width_ix = -1, prec_ix= -1;
	if (components[i].widthtype == print_format::width_dynamic)
	  width_ix = arg_ix++;
	if (components[i].prectype == print_format::prec_dynamic)
	  prec_ix = arg_ix++;

        (void) width_ix; /* XXX: notused */

        /* %m and %M need special care for digging into memory. */
	if (components[i].type == print_format::conv_memory
	    || components[i].type == print_format::conv_memory_hex)
	  {
	    string mem_size;
	    const token* prec_tok = e->tok;
	    if (prec_ix != -1)
	      {
		mem_size = tmp[prec_ix].value();
		prec_tok = e->args[prec_ix]->tok;
	      }
	    else if (components[i].prectype == print_format::prec_static &&
		     components[i].precision > 0)
	      mem_size = lex_cast(components[i].precision) + "LL";
	    else
	      mem_size = "1LL";

	    /* Limit how much can be printed at a time. (see also PR10490) */
	    o->newline() << "c->last_stmt = " << lex_cast_qstring(*prec_tok) << ";";
	    o->newline() << "if (" << mem_size << " > PAGE_SIZE) {";
	    o->newline(1) << "snprintf(c->error_buffer, sizeof(c->error_buffer), "
			  << "\"%lld is too many bytes for a memory dump\", (long long)"
			  << mem_size << ");";
	    o->newline() << "c->last_error = c->error_buffer;";
	    o->newline() << "goto out;";
	    o->newline(-1) << "}";
	  }

	++arg_ix;
      }

      // Shortcuts for cases that aren't formatted at all
      if (e->print_to_stream)
        {
	  if (e->print_char)
	    {
	      o->newline() << "_stp_print_char (";
	      if (tmp.size())
		o->line() << tmp[0].value() << ");";
	      else
		o->line() << '"' << format_string_out << "\");";
	      return;
	    }
	  if (use_print)
	    {
	      o->newline() << "_stp_print (";
	      if (tmp.size())
		o->line() << tmp[0].value() << ");";
	      else
		o->line() << '"' << format_string_out << "\");";
	      return;
	    }
	}

      // The default it to use the new compiled-printf, but one can fall back
      // to the old code with -DSTP_LEGACY_PRINT if desired.
      o->newline() << "#ifndef STP_LEGACY_PRINT";
      o->indent(1);

      // Copy all arguments to the compiled-printf's space, then call it
      const string& compiled_printf =
	get_compiled_printf (e->print_to_stream, format_string);
      for (unsigned i = 0; i < tmp.size(); ++i)
	o->newline() << "c->printf_locals." << compiled_printf
		     << ".arg" << i << " = " << tmp[i].value() << ";";
      if (e->print_to_stream)
	// We'll just hardcode the result of 0 instead of using the
	// temporary.
	res.override("((int64_t)0LL)");
      else
	o->newline() << "c->printf_locals." << compiled_printf
		     << ".__retvalue = " << res.value() << ";";
      o->newline() << compiled_printf << " (c);";

      o->newline(-1) << "#else // STP_LEGACY_PRINT";
      o->indent(1);

      // Generate the legacy call that goes through _stp_vsnprintf.
      if (e->print_to_stream)
	o->newline() << "_stp_printf (";
      else
	o->newline() << "_stp_snprintf (" << res.value() << ", MAXSTRINGLEN, ";
      o->line() << '"' << format_string_out << '"';

      // Make sure arguments match the expected type of the format specifier.
      arg_ix = 0;
      for (unsigned i = 0; i < components.size(); ++i)
	{
	  if (components[i].type == print_format::conv_literal)
	    continue;

	  /* Cast the width and precision arguments, if any, to 'int'.  */
	  if (components[i].widthtype == print_format::width_dynamic)
	    o->line() << ", (int)" << tmp[arg_ix++].value();
	  if (components[i].prectype == print_format::prec_dynamic)
	    o->line() << ", (int)" << tmp[arg_ix++].value();

	  /* The type of the %m argument is 'char*'.  */
	  if (components[i].type == print_format::conv_memory
	      || components[i].type == print_format::conv_memory_hex)
	    o->line() << ", (char*)(uintptr_t)" << tmp[arg_ix++].value();
	  /* The type of the %c argument is 'int'.  */
	  else if (components[i].type == print_format::conv_char)
	    o->line() << ", (int)" << tmp[arg_ix++].value();
	  else if (arg_ix < tmp.size())
	    o->line() << ", " << tmp[arg_ix++].value();
	}
      o->line() << ");";
      o->newline(-1) << "#endif // STP_LEGACY_PRINT";
      o->newline() << "if (unlikely(c->last_error || c->aborted)) goto out;";
      o->newline() << res.value() << ";";
    }
}

void
c_unparser::visit_stat_op (stat_op* e)
{
  // Stat ops can be *applied* to two types of expression:
  //
  //  1. An arrayindex expression on a pe_stats-valued array.
  //
  //  2. A symbol of type pe_stats.

  // FIXME: classify the expression the stat_op is being applied to,
  // call appropriate stp_get_stat() / stp_pmap_get_stat() helper,
  // then reach into resultant struct stat_data.

  // FIXME: also note that summarizing anything is expensive, and we
  // really ought to pass a timeout handler into the summary routine,
  // check its response, possibly exit if it ran out of cycles.

  {
    stmt_expr block(*this);
    aggvar agg = gensym_aggregate ();
    tmpvar res = gensym (pe_long);
    var *v = load_aggregate(e->stat, agg);
    {
      // PR 2142+2610: empty aggregates
      if ((e->ctype == sc_count) ||
          (e->ctype == sc_sum &&
           strverscmp(session->compatible.c_str(), "1.5") >= 0))
        {
          o->newline() << "if (unlikely (" << agg.value() << " == NULL))";
          o->indent(1);
          c_assign(res, "0", e->tok);
          o->indent(-1);
        }
      else
        {
          o->newline() << "if (unlikely (" << agg.value() << " == NULL)"
                       << " || " <<  agg.value() << "->count == 0) {";
          o->newline(1) << "c->last_error = ";
          o->line() << STAP_T_06;
          o->newline() << "c->last_stmt = " << lex_cast_qstring(*e->tok) << ";";
          o->newline() << "goto out;";
          o->newline(-1) << "}";
        }
      o->newline() << "else";
      o->indent(1);
      switch (e->ctype)
        {
        case sc_average:
          c_assign(res, ("_stp_div64(NULL, " + agg.value() + "->sum, "
                         + agg.value() + "->count)"),
                   e->tok);
          break;
        case sc_count:
          c_assign(res, agg.value() + "->count", e->tok);
          break;
        case sc_sum:
          c_assign(res, agg.value() + "->sum", e->tok);
          break;
        case sc_min:
          c_assign(res, agg.value() + "->min", e->tok);
          break;
        case sc_max:
          c_assign(res, agg.value() + "->max", e->tok);
          break;
        case sc_variance:
          c_assign(res, agg.value() + "->variance", e->tok);
          break;
        case sc_none:
          assert (0); // should not happen, as sc_none is only used in foreach sorts
        }
      o->indent(-1);
    }
    o->newline() << res << ";";
    delete v;
  }
}


void
c_unparser::visit_hist_op (hist_op*)
{
  // Hist ops can only occur in a limited set of circumstances:
  //
  //  1. Inside an arrayindex expression, as the base referent. See
  //     c_unparser::visit_arrayindex for handling of this case.
  //
  //  2. Inside a foreach statement, as the base referent. See
  //     c_unparser::visit_foreach_loop for handling this case.
  //
  //  3. Inside a print_format expression, as the sole argument. See
  //     c_unparser::visit_print_format for handling this case.
  //
  // Note that none of these cases involves the c_unparser ever
  // visiting this node. We should not get here.

  assert(false);
}


typedef map<Dwarf_Addr,const char*> addrmap_t; // NB: plain map, sorted by address

struct unwindsym_dump_context
{
  systemtap_session& session;
  ostream& output;
  unsigned stp_module_index;

  int build_id_len;
  unsigned char *build_id_bits;
  GElf_Addr build_id_vaddr;

  unsigned long stp_kretprobe_trampoline_addr;
  Dwarf_Addr stext_offset;

  vector<pair<string,unsigned> > seclist; // encountered relocation bases
                                          // (section names and sizes)
  map<unsigned, addrmap_t> addrmap; // per-relocation-base sorted addrmap

  void *debug_frame;
  size_t debug_len;
  void *debug_frame_hdr;
  size_t debug_frame_hdr_len;
  Dwarf_Addr debug_frame_off;
  void *eh_frame;
  void *eh_frame_hdr;
  size_t eh_len;
  size_t eh_frame_hdr_len;
  Dwarf_Addr eh_addr;
  Dwarf_Addr eh_frame_hdr_addr;
  void *debug_line;
  size_t debug_line_len;
  void *debug_line_str;
  size_t debug_line_str_len;

  set<string> undone_unwindsym_modules;
};

static bool need_byte_swap_for_target (const unsigned char e_ident[])
{
#if __BYTE_ORDER == __LITTLE_ENDIAN
  return (e_ident[EI_DATA] == ELFDATA2MSB);
#elif __BYTE_ORDER == __BIG_ENDIAN
  return (e_ident[EI_DATA] == ELFDATA2LSB);
#else
  #error Bad host __BYTE_ORDER
#endif
}

static void create_debug_frame_hdr (const unsigned char e_ident[],
				    Elf_Data *debug_frame,
				    void **debug_frame_hdr,
				    size_t *debug_frame_hdr_len,
				    Dwarf_Addr *debug_frame_off,
				    systemtap_session& session,
				    Dwfl_Module *mod)
{
  *debug_frame_hdr = NULL;
  *debug_frame_hdr_len = 0;

  int cies = 0;
  set< pair<Dwarf_Addr, Dwarf_Off> > fdes;
  set< pair<Dwarf_Addr, Dwarf_Off> >::iterator it;

  // In the .debug_frame the FDE encoding is always DW_EH_PE_absptr.
  // So there is no need to read the CIEs.  And the size is either 4
  // or 8, depending on the elf class from e_ident.
  int size = (e_ident[EI_CLASS] == ELFCLASS32) ? 4 : 8;
  bool need_byte_swap = need_byte_swap_for_target (e_ident);
#define host_to_target_64(x) (need_byte_swap ? bswap_64((x)) : (x))
#define host_to_target_32(x) (need_byte_swap ? bswap_32((x)) : (x))
#define target_to_host_64(x) (need_byte_swap ? bswap_64((x)) : (x))
#define target_to_host_32(x) (need_byte_swap ? bswap_32((x)) : (x))

  int res = 0;
  Dwarf_Off off = 0;
  Dwarf_CFI_Entry entry;

  while (res != 1)
    {
      Dwarf_Off next_off;
      res = dwarf_next_cfi (e_ident, debug_frame, false, off, &next_off,
			    &entry);
      if (res == 0)
	{
	  if (entry.CIE_id == DW_CIE_ID_64)
	    cies++; // We can just ignore the CIEs.
	  else
	    {
	      Dwarf_Addr addr;
	      if (size == 4)
		addr = target_to_host_32((*((uint32_t *) entry.fde.start)));
	      else
		addr = target_to_host_64((*((uint64_t *) entry.fde.start)));
	      fdes.insert(pair<Dwarf_Addr, Dwarf_Off>(addr, off));
	    }
	}
      else if (res > 0)
	; // Great, all done.
      else
	{
	  // Warn, but continue, backtracing will be slow...
          if (session.verbose > 2 && ! session.suppress_warnings)
	    {
	      const char *modname = dwfl_module_info (mod, NULL,
						      NULL, NULL, NULL,
						      NULL, NULL, NULL);
	      session.print_warning("Problem creating debug frame hdr for "
				    + lex_cast_qstring(modname)
				    + ", " + dwarf_errmsg (-1));
	    }
	  return;
	}
      off = next_off;
    }

  if (fdes.size() > 0)
    {
      it = fdes.begin();
      Dwarf_Addr first_addr = (*it).first;
      int res = dwfl_module_relocate_address (mod, &first_addr);
      DWFL_ASSERT ("create_debug_frame_hdr, dwfl_module_relocate_address",
		   res >= 0);
      *debug_frame_off = (*it).first - first_addr;
    }

  size_t total_size = 4 + (2 * size) + (2 * size * fdes.size());
  uint8_t *hdr = (uint8_t *) malloc(total_size);
  *debug_frame_hdr = hdr;
  *debug_frame_hdr_len = total_size;

  hdr[0] = 1; // version
  hdr[1] = DW_EH_PE_absptr; // ptr encoding
  hdr[2] = (size == 4) ? DW_EH_PE_udata4 : DW_EH_PE_udata8; // count encoding
  hdr[3] = DW_EH_PE_absptr; // table encoding
  if (size == 4)
    {
      uint32_t *table = (uint32_t *)(hdr + 4);
      *table++ = host_to_target_32 ((uint32_t) 0); // eh_frame_ptr, unused
      *table++ = host_to_target_32 ((uint32_t) fdes.size());
      for (it = fdes.begin(); it != fdes.end(); it++)
	{
	  *table++ = host_to_target_32 ((*it).first);
	  *table++ = host_to_target_32 ((*it).second);
	}
    }
  else
    {
      uint64_t *table = (uint64_t *)(hdr + 4);
      *table++ = host_to_target_64 ((uint64_t) 0); // eh_frame_ptr, unused
      *table++ = host_to_target_64 ((uint64_t) fdes.size());
      for (it = fdes.begin(); it != fdes.end(); it++)
	{
	  *table++ = host_to_target_64 ((*it).first);
	  *table++ = host_to_target_64 ((*it).second);
	}
    }
}

static set<string> vdso_paths;

// Get the .debug_frame end .eh_frame sections for the given module.
// Also returns the lenght of both sections when found, plus the section
// address (offset) of the eh_frame data. If a debug_frame is found, a
// synthesized debug_frame_hdr is also returned.
static void get_unwind_data (Dwfl_Module *m,
			     void **debug_frame, void **eh_frame,
			     size_t *debug_len, size_t *eh_len,
			     Dwarf_Addr *eh_addr,
			     void **eh_frame_hdr, size_t *eh_frame_hdr_len,
			     void **debug_frame_hdr,
			     size_t *debug_frame_hdr_len,
			     Dwarf_Addr *debug_frame_off,
			     Dwarf_Addr *eh_frame_hdr_addr,
			     systemtap_session& session)
{
  Dwarf_Addr start, bias = 0;
  GElf_Ehdr *ehdr, ehdr_mem;
  GElf_Shdr *shdr, shdr_mem;
  Elf_Scn *scn;
  Elf_Data *data = NULL;
  Elf *elf;

  // fetch .eh_frame info preferably from main elf file.
  dwfl_module_info (m, NULL, &start, NULL, NULL, NULL, NULL, NULL);
  elf = dwfl_module_getelf(m, &bias);
  ehdr = gelf_getehdr(elf, &ehdr_mem);

  scn = NULL;
  bool eh_frame_seen = false;
  bool eh_frame_hdr_seen = false;
  while ((scn = elf_nextscn(elf, scn)))
    {
      shdr = gelf_getshdr(scn, &shdr_mem);
      const char* scn_name = elf_strptr(elf, ehdr->e_shstrndx, shdr->sh_name);
      if (!eh_frame_seen
	  && strcmp(scn_name, ".eh_frame") == 0
	  && shdr->sh_type == SHT_PROGBITS)
	{
	  data = elf_rawdata(scn, NULL);
	  *eh_frame = data->d_buf;
	  *eh_len = data->d_size;
	  // For ".dynamic" sections we want the offset, not absolute addr.
	  // Note we don't trust dwfl_module_relocations() for ET_EXEC.
	  if (ehdr->e_type != ET_EXEC && dwfl_module_relocations (m) > 0)
	    *eh_addr = shdr->sh_addr - start + bias;
	  else
	    *eh_addr = shdr->sh_addr;
	  eh_frame_seen = true;
	}
      else if (!eh_frame_hdr_seen
	       && strcmp(scn_name, ".eh_frame_hdr") == 0
	       && shdr->sh_type == SHT_PROGBITS)
        {
          data = elf_rawdata(scn, NULL);
          *eh_frame_hdr = data->d_buf;
          *eh_frame_hdr_len = data->d_size;
          if (ehdr->e_type != ET_EXEC && dwfl_module_relocations (m) > 0)
	    *eh_frame_hdr_addr = shdr->sh_addr - start + bias;
	  else
	    *eh_frame_hdr_addr = shdr->sh_addr;
          eh_frame_hdr_seen = true;
        }
      if (eh_frame_seen && eh_frame_hdr_seen)
        break;
    }

  // fetch .debug_frame info preferably from dwarf debuginfo file.
  elf = (dwarf_getelf (dwfl_module_getdwarf (m, &bias))
	 ?: dwfl_module_getelf (m, &bias));
  ehdr = gelf_getehdr(elf, &ehdr_mem);
  scn = NULL;
  while ((scn = elf_nextscn(elf, scn)))
    {
      const char *sh_name;
      shdr = gelf_getshdr(scn, &shdr_mem);
      sh_name = elf_strptr(elf, ehdr->e_shstrndx, shdr->sh_name);
      // decompression is done via dwarf_begin_elf / global_read / check_section
      // / elf_compress_gnu / __libelf_decompress in libelf/elf_compress_gnu.c
      if (strcmp(sh_name, ".debug_frame") == 0
          || strcmp(sh_name, ".zdebug_frame") == 0)
	{
	  data = elf_rawdata(scn, NULL);
	  *debug_frame = data->d_buf;
	  *debug_len = data->d_size;
	  break;
	}
    }

  if (*debug_frame != NULL && *debug_len > 0)
    create_debug_frame_hdr (ehdr->e_ident, data,
			    debug_frame_hdr, debug_frame_hdr_len,
			    debug_frame_off, session, m);
}

static int
dump_build_id (Dwfl_Module *m,
	       unwindsym_dump_context *c,
	       const char *name, Dwarf_Addr)
{
  string modname = name;

  //extract build-id from debuginfo file
  int build_id_len = 0;
  unsigned char *build_id_bits;
  GElf_Addr build_id_vaddr;

  if ((build_id_len=dwfl_module_build_id(m,
                                        (const unsigned char **)&build_id_bits,
                                         &build_id_vaddr)) > 0)
  {
     if (modname != "kernel")
      {
        Dwarf_Addr reloc_vaddr = build_id_vaddr;
        const char *secname;
        int i;

        i = dwfl_module_relocate_address (m, &reloc_vaddr);
        DWFL_ASSERT ("dwfl_module_relocate_address reloc_vaddr", i >= 0);

        secname = dwfl_module_relocation_info (m, i, NULL);

        // assert same section name as in runtime/transport/symbols.c
        // NB: this is applicable only to module("...") probes.
        // process("...") ones may have relocation bases like '.dynamic',
        // and so we'll have to store not just a generic offset but
        // the relocation section/symbol name too: just like we do
        // for probe PC addresses themselves.  We want to set build_id_vaddr for
        // user modules even though they will not have a secname.

	if (modname[0] != '/')
	  if (!secname || strcmp(secname, ".note.gnu.build-id"))
	    throw SEMANTIC_ERROR (_("unexpected build-id reloc section ") +
				  string(secname ?: "null"));

        build_id_vaddr = reloc_vaddr;
      }

    if (c->session.verbose > 1)
      {
        clog << _F("Found build-id in %s, length %d, start at %#" PRIx64,
                   name, build_id_len, build_id_vaddr) << endl;
      }

    c->build_id_len = build_id_len;
    c->build_id_vaddr = build_id_vaddr;
    c->build_id_bits = build_id_bits;
  }

  return DWARF_CB_OK;
}

static int
dump_section_list (Dwfl_Module *m,
                   unwindsym_dump_context *c,
                   const char *name, Dwarf_Addr)
{
  // Depending on ELF section names normally means you are doing it WRONG.
  // Sadly it seems we do need it for the kernel modules. Which are ET_REL
  // files, which are "dynamically loaded" by the kernel. We keep a section
  // list for them to know which symbol corresponds to which section.
  //
  // Luckily for the kernel, normal executables (ET_EXEC) or shared
  // libraries (ET_DYN) we don't need it. We just have one "section",
  // which we will just give the arbitrary names "_stext", ".absolute"
  // or ".dynamic"

  string modname = name;

  // Use start and end as to calculate size for _stext, .dynamic and
  // .absolute sections.
  Dwarf_Addr start, end;
  dwfl_module_info (m, NULL, &start, &end, NULL, NULL, NULL, NULL);

  // Look up the relocation basis for symbols
  int n = dwfl_module_relocations (m);
  DWFL_ASSERT ("dwfl_module_relocations", n >= 0);

 if (n == 0)
    {
      // ET_EXEC, no relocations.
      string secname = ".absolute";
      unsigned size = end - start;
      c->seclist.push_back (make_pair (secname, size));
      return DWARF_CB_OK;
    }
  else if (n == 1)
    {
      // kernel or shared library (ET_DYN).
      string secname;
      secname = (modname == "kernel") ? "_stext" : ".dynamic";
      unsigned size = end - start;
      c->seclist.push_back (make_pair (secname, size));
      return DWARF_CB_OK;
    }
  else if (n > 1)
    {
      // ET_REL, kernel module.
      string secname;
      unsigned size;
      Dwarf_Addr bias;
      GElf_Ehdr *ehdr, ehdr_mem;
      GElf_Shdr *shdr, shdr_mem;
      Elf *elf = dwfl_module_getelf(m, &bias);
      ehdr = gelf_getehdr(elf, &ehdr_mem);
      Elf_Scn *scn = NULL;
      while ((scn = elf_nextscn(elf, scn)))
	{
	  // Just the "normal" sections with program bits please.
	  shdr = gelf_getshdr(scn, &shdr_mem);
	  if ((shdr->sh_type == SHT_PROGBITS || shdr->sh_type == SHT_NOBITS)
	      && (shdr->sh_flags & SHF_ALLOC))
	    {
	      size = shdr->sh_size;
	      const char* scn_name = elf_strptr(elf, ehdr->e_shstrndx,
						shdr->sh_name);
	      secname = scn_name;
	      c->seclist.push_back (make_pair (secname, size));
	    }
	}

      return DWARF_CB_OK;
    }

  // Impossible... dflw_assert above will have triggered.
  return DWARF_CB_ABORT;
}

static void find_debug_frame_offset (Dwfl_Module *m,
                                     unwindsym_dump_context *c)
{
  Dwarf_Addr start, bias = 0;
  GElf_Ehdr *ehdr, ehdr_mem;
  GElf_Shdr *shdr, shdr_mem;
  Elf_Scn *scn = NULL;
  Elf_Data *data = NULL;
  Elf *elf;

  dwfl_module_info (m, NULL, &start, NULL, NULL, NULL, NULL, NULL);

  // fetch .debug_frame info preferably from dwarf debuginfo file.
  elf = (dwarf_getelf (dwfl_module_getdwarf (m, &bias))
	 ?: dwfl_module_getelf (m, &bias));
  ehdr = gelf_getehdr(elf, &ehdr_mem);

  while ((scn = elf_nextscn(elf, scn)))
    {
      const char *sh_name;
      shdr = gelf_getshdr(scn, &shdr_mem);
      sh_name = elf_strptr(elf, ehdr->e_shstrndx, shdr->sh_name);
      // decompression is done via dwarf_begin_elf / global_read / check_section
      // / elf_compress_gnu / __libelf_decompress in libelf/elf_compress_gnu.c
      if (strcmp(sh_name, ".debug_frame") == 0
          || strcmp(sh_name, ".zdebug_frame") == 0)
	{
	  data = elf_rawdata(scn, NULL);
	  break;
	}
    }

  if (!data) // need this check since dwarf_next_cfi() doesn't do it
    return;

  // In the .debug_frame the FDE encoding is always DW_EH_PE_absptr.
  // So there is no need to read the CIEs.  And the size is either 4
  // or 8, depending on the elf class from e_ident.
  int size = (ehdr->e_ident[EI_CLASS] == ELFCLASS32) ? 4 : 8;
  int res = 0;
  Dwarf_Off off = 0;
  Dwarf_CFI_Entry entry;

  while (res != 1)
    {
      Dwarf_Off next_off;
      res = dwarf_next_cfi (ehdr->e_ident, data, false, off, &next_off, &entry);
      if (res == 0)
	{
	  if (entry.CIE_id != DW_CIE_ID_64) // ignore CIEs
	    {
	      Dwarf_Addr addr;
	      if (size == 4)
		addr = (*((uint32_t *) entry.fde.start));
	      else
		addr = (*((uint64_t *) entry.fde.start));
              Dwarf_Addr first_addr = addr;
              int res = dwfl_module_relocate_address (m, &first_addr);
              DWFL_ASSERT ("find_debug_frame_offset, dwfl_module_relocate_address",
                           res >= 0);
              c->debug_frame_off = addr - first_addr;
	    }
	}
      else if (res < 1)
        return;
      off = next_off;
    }
}

static int
dump_line_tables_check (void *data, size_t data_len)
{
  uint64_t unit_length = 0,  header_length = 0;
  uint16_t version = 0;
  uint8_t *ptr = (uint8_t *)data, *endunitptr, opcode_base = 0;
  unsigned length = 4;

  while (ptr < ((uint8_t *)data + data_len))
   {
      if (ptr + 4 > (uint8_t *)data + data_len)
        return DWARF_CB_ABORT;

      unit_length = *((uint32_t *) ptr);
      ptr += 4;
      if (unit_length == 0xffffffff)
        {
          if (ptr + 8 > (uint8_t *)data + data_len)
            return DWARF_CB_ABORT;
          length = 8;
          unit_length = *((uint64_t *) ptr);
          ptr += 8;
        }

      if ((ptr + unit_length > (uint8_t *)data + data_len) || unit_length <= 2)
        return DWARF_CB_ABORT;

      endunitptr = ptr + unit_length;

      version  = *((uint16_t *)ptr);
      ptr += 2;

      // Need to skip over DWARF 5's address_size and segment_selector_size right
      // to hdr_length (analogy to what happens in pass2's dump_line_tables_check()
      // PR29984
      if (version >= 5)
      {
        if (ptr + 2 > (uint8_t *)data + data_len)
            return DWARF_CB_ABORT;
        ptr += 2;
      }

      if (unit_length <= (2 + length))
        return DWARF_CB_ABORT;

      if (length == 4)
        {
          header_length = *((uint32_t *) ptr);
          ptr += 4;
        }
      else
        {
          header_length = *((uint64_t *) ptr);
          ptr += 8;
        }

      // safety check for the next few jumps
      if (header_length <= ((version >= 4 ? 5 : 4) + 2)
          || (unit_length - (2 + length) < header_length))
        return DWARF_CB_ABORT;

      // skip past min instr length, max ops per instr, and line base
      if (version >= 4)
        ptr += 3;
      else
        ptr += 2;

      // check that the line range is not 0
      if (*ptr == 0)
        return DWARF_CB_ABORT;
      ptr++;

      // check that the header accomodates the std opcode lens section
      opcode_base = *((uint8_t *) ptr);
      if (header_length <= (uint64_t) (opcode_base + (version >= 4 ? 7 : 6)))
        return DWARF_CB_ABORT;

      // the initial checks stop here, before the directory table
      ptr = endunitptr;
    }
  return DWARF_CB_OK;
}

static void
dump_line_tables (Dwfl_Module *m, unwindsym_dump_context *c,
                  const char *, Dwarf_Addr)
{
  Elf* elf;
  Elf_Scn* scn = NULL;
  Elf_Data* data;
  GElf_Ehdr *ehdr, ehdr_mem;
  GElf_Shdr* shdr, shdr_mem;
  Dwarf_Addr bias, start;

  dwfl_module_info (m, NULL, &start, NULL, NULL, NULL, NULL, NULL);

  elf = dwfl_module_getelf (m, &bias);
  if (elf == NULL)
    return;

  // we do not have the index for debug_line, so we can't use elf_getscn()
  // instead, we need to seach through the sections for the correct one as in
  // get_unwind_data()
  ehdr = gelf_getehdr(elf, &ehdr_mem);
  while ((scn = elf_nextscn(elf, scn)))
    {
      const char *sh_name;
      shdr = gelf_getshdr(scn, &shdr_mem);
      sh_name = elf_strptr(elf, ehdr->e_shstrndx, shdr->sh_name);
      // decompression is done via dwarf_begin_elf / global_read / check_section
      // / elf_compress_gnu / __libelf_decompress in libelf/elf_compress_gnu.c
      if (strcmp(sh_name, ".debug_line") == 0
          || strcmp(sh_name, ".zdebug_line") == 0)
        {
          data = elf_rawdata(scn, NULL);
          if (dump_line_tables_check(data->d_buf, data->d_size) == DWARF_CB_ABORT)
            return;
          c->debug_line = data->d_buf;
          c->debug_line_len = data->d_size;
          continue;
        }
       if (strcmp(sh_name, ".debug_line_str") == 0
           || strcmp(sh_name, ".zdebug_line_str") == 0)
        {
          data = elf_rawdata(scn, NULL);
          c->debug_line_str = data->d_buf;
          c->debug_line_str_len = data->d_size;
          continue;
        }
    }

  // still need to get some kind of information about the sec_load_offset for
  // kernel addresses if there is no unwind data
  if (c->debug_line_len > 0 && !c->session.need_unwind)
    find_debug_frame_offset (m, c);
}

/* Some architectures create special local symbols that are not
   interesting. */
static int
skippable_arch_symbol (GElf_Half e_machine, const char *name, GElf_Sym *sym)
{
  /* Filter out ARM mapping symbols */
  if ((e_machine == EM_ARM || e_machine == EM_AARCH64)
      && GELF_ST_TYPE (sym->st_info) == STT_NOTYPE
      && (! strcmp(name, "$a") || ! strcmp(name, "$t") || ! strcmp(name, "$x")
	  || ! strcmp(name, "$t.x") || ! strcmp(name, "$d")
	  || ! strcmp(name, "$v") || ! strcmp(name, "$d.realdata")))
    return 1;

  return 0;
}

static int
dump_symbol_tables (Dwfl_Module *m,
		    unwindsym_dump_context *c,
		    const char *modname, Dwarf_Addr base)
{
  // Use end as sanity check when resolving symbol addresses.
  Dwarf_Addr end;
  dwfl_module_info (m, NULL, NULL, &end, NULL, NULL, NULL, NULL);

  int syments = dwfl_module_getsymtab(m);
  if (syments < 0) // RHBZ1795196: elfutils 0.178+ can open vmlinuz as elf.main but fail here
    {
      c->session.print_warning(_F("libdwfl failure getting symbol table for %s: %s",
                                  modname, dwfl_errmsg(-1)));
      return DWARF_CB_ABORT;

      // signal to dump_unwindsyms() to not let things proceed all the way to
      // dump_unwindsym_cxt(), which then believes it has all the info for a
      // complete record about this module.  In the kernel's case, this allows
      // PR17921 fallback to /proc/kallsyms via dump_kallsyms().
    }

  // Look up the relocation basis for symbols
  int n = dwfl_module_relocations (m);
  DWFL_ASSERT ("dwfl_module_relocations", n >= 0);

  /* Needed on ppc64, for function descriptors. */
  Dwarf_Addr elf_bias;
  GElf_Ehdr *ehdr, ehdr_mem;
  Elf *elf;
  elf = dwfl_module_getelf(m, &elf_bias);
  ehdr = gelf_getehdr(elf, &ehdr_mem);

  // XXX: unfortunate duplication with tapsets.cxx:emit_address()

  // extra_offset is for the special kernel case.
  Dwarf_Addr extra_offset = 0;
  Dwarf_Addr kretprobe_trampoline_addr = (unsigned long) -1;
  int is_kernel = !strcmp(modname, "kernel");

  /* Set to bail early if we are just examining the kernel
     and don't need anything more. */
  int done = 0;
  for (int i = 0; i < syments && !done; ++i)
    {
      if (pending_interrupts)
        return DWARF_CB_ABORT;

      GElf_Sym sym;
      GElf_Word shndxp;

      const char *name = dwfl_module_getsym(m, i, &sym, &shndxp);
      if (name)
        {
          Dwarf_Addr sym_addr = sym.st_value;

	  // We always need two special values from the kernel.
	  // _stext for extra_offset and kretprobe_trampoline_holder
	  // for the unwinder.
          if (is_kernel)
	    {
	      // NB: Yey, we found the kernel's _stext value.
	      // Sess.sym_stext may be unset (0) at this point, since
	      // there may have been no kernel probes set.  We could
	      // use tapsets.cxx:lookup_symbol_address(), but then
	      // we're already iterating over the same data here...
	      if (! strcmp(name, KERNEL_RELOC_SYMBOL))
		{
		  int ki;
		  extra_offset = sym_addr;
		  ki = dwfl_module_relocate_address (m, &extra_offset);
		  DWFL_ASSERT ("dwfl_module_relocate_address extra_offset",
			       ki >= 0);

		  if (c->session.verbose > 2)
		    clog << _F("Found kernel _stext extra offset %#" PRIx64,
			       extra_offset) << endl;

		  if (! c->session.need_symbols
		      && (kretprobe_trampoline_addr != (unsigned long) -1
			  || ! c->session.need_unwind))
		    done = 1;
		}
	      else if (kretprobe_trampoline_addr == (unsigned long) -1
		       && c->session.need_unwind
		       && ! strcmp(name, "kretprobe_trampoline_holder"))
		{
		  int ki;
                  kretprobe_trampoline_addr = sym_addr;
                  ki = dwfl_module_relocate_address(m,
						    &kretprobe_trampoline_addr);
                  DWFL_ASSERT ("dwfl_module_relocate_address, kretprobe_trampoline_addr", ki >= 0);

		  if (! c->session.need_symbols
		      && extra_offset != 0)
		    done = 1;
		}
            }

	  // We are only interested in "real" symbols.
	  // We omit symbols that have suspicious addresses
	  // (before base, or after end).
          if (!done && c->session.need_symbols
	      && ! skippable_arch_symbol(ehdr->e_machine, name, &sym)
	      && (GELF_ST_TYPE (sym.st_info) == STT_FUNC
		  || (GELF_ST_TYPE (sym.st_info) == STT_NOTYPE
		      && (ehdr->e_type == ET_REL // PR10206 ppc fn-desc in .opd
			  || is_kernel)) // kernel entry functions are NOTYPE
		  || GELF_ST_TYPE (sym.st_info) == STT_OBJECT) // PR10000: .data
               && !(sym.st_shndx == SHN_UNDEF	// Value undefined,
		    || shndxp == (GElf_Word) -1	// in a non-allocated section,
		    || sym_addr >= end	// beyond current module,
		    || sym_addr < base))	// before first section.
            {
              const char *secname = NULL;
              unsigned secidx = 0; /* Most things have just one section. */
	      Dwarf_Addr func_desc_addr = 0; /* Function descriptor */

	      /* PPC64 uses function descriptors.
		 Note: for kernel ET_REL modules we rely on finding the
		 .function symbols instead of going through the opd function
		 descriptors. */
	      if (ehdr->e_machine == EM_PPC64
		  && GELF_ST_TYPE (sym.st_info) == STT_FUNC
		  && ehdr->e_type != ET_REL)
		{
		  Elf64_Addr opd_addr;
		  Dwarf_Addr opd_bias;
		  Elf_Scn *opd;

		  func_desc_addr = sym_addr;

		  opd = dwfl_module_address_section (m, &sym_addr, &opd_bias);
		  DWFL_ASSERT ("dwfl_module_address_section opd", opd != NULL);

		  Elf_Data *opd_data = elf_rawdata (opd, NULL);
		  assert(opd_data != NULL);

		  Elf_Data opd_in, opd_out;
		  opd_out.d_buf = &opd_addr;
		  opd_in.d_buf = (char *) opd_data->d_buf + sym_addr;
		  opd_out.d_size = opd_in.d_size = sizeof (Elf64_Addr);
		  opd_out.d_type = opd_in.d_type = ELF_T_ADDR;
		  if (elf64_xlatetom (&opd_out, &opd_in,
				      ehdr->e_ident[EI_DATA]) == NULL)
		    throw runtime_error ("elf64_xlatetom failed");

		  // So the real address of the function is...
		  sym_addr = opd_addr + opd_bias;
		}

              if (n > 0) // only try to relocate if there exist relocation bases
                {
                  int ki = dwfl_module_relocate_address (m, &sym_addr);
                  DWFL_ASSERT ("dwfl_module_relocate_address sym_addr", ki >= 0);
                  secname = dwfl_module_relocation_info (m, ki, NULL);

		  if (func_desc_addr != 0)
		    dwfl_module_relocate_address (m, &func_desc_addr);
		}

              if (n == 1 && is_kernel)
                {
                  // This is a symbol within a (possibly relocatable)
                  // kernel image.

		  // We only need the function symbols to identify kernel-mode
		  // PC's, so we omit undefined or "fake" absolute addresses.
		  // These fake absolute addresses occur in some older i386
		  // kernels to indicate they are vDSO symbols, not real
		  // functions in the kernel. We also omit symbols that have
                  if (GELF_ST_TYPE (sym.st_info) == STT_FUNC
		      && sym.st_shndx == SHN_ABS)
		    continue;

                  secname = "_stext";
                  // NB: don't subtract session.sym_stext, which could be
                  // inconveniently NULL. Instead, sym_addr will get
                  // compensated later via extra_offset.
                }
              else if (n > 0)
                {
                  assert (secname != NULL);
                  // secname adequately set

                  // NB: it may be an empty string for ET_DYN objects
                  // like shared libraries, as their relocation base
                  // is implicit.
                  if (secname[0] == '\0')
		    secname = ".dynamic";
		  else
		    {
		      // Compute our section number
		      for (secidx = 0; secidx < c->seclist.size(); secidx++)
			if (c->seclist[secidx].first==secname)
			  break;

		      if (secidx == c->seclist.size()) // PR23747 not an error
			{
                          continue; // way back to the next symbol
			}
		    }
                }
              else
                {
                  assert (n == 0);
                  // sym_addr is absolute, as it must be since there are
                  // no relocation bases
                  secname = ".absolute"; // sentinel
                }

              (c->addrmap[secidx])[sym_addr] = name;
	      /* If we have a function descriptor, register that address
	         under the same name */
	      if (func_desc_addr != 0)
		(c->addrmap[secidx])[func_desc_addr] = name;
            }
        }
    }

  if (is_kernel)
    {
      c->stext_offset = extra_offset;
      // Must be relative to actual kernel load address.
      if (kretprobe_trampoline_addr != (unsigned long) -1)
	c->stp_kretprobe_trampoline_addr = (kretprobe_trampoline_addr
					    - extra_offset);
    }

  return DWARF_CB_OK;
}

static int
dump_unwind_tables (Dwfl_Module *m,
		    unwindsym_dump_context *c,
		    const char *, Dwarf_Addr)
{
  // Add unwind data to be included if it exists for this module.
  get_unwind_data (m, &c->debug_frame, &c->eh_frame,
		   &c->debug_len, &c->eh_len,
		   &c->eh_addr, &c->eh_frame_hdr, &c->eh_frame_hdr_len,
		   &c->debug_frame_hdr, &c->debug_frame_hdr_len,
		   &c->debug_frame_off, &c->eh_frame_hdr_addr,
                   c->session);
  return DWARF_CB_OK;
}

static void
dump_unwindsym_cxt_table(systemtap_session& session, ostream& output,
			 const string& modname, unsigned modindex,
			 const string& secname, unsigned secindex,
			 const string& table, void*& data, size_t& len)
{
  if (len > MAX_UNWIND_TABLE_SIZE)
    {
      if (secname.empty())
	session.print_warning (_F("skipping module %s %s table (too big: %zi > %zi)",
				  modname.c_str(), table.c_str(),
				  len, (size_t)MAX_UNWIND_TABLE_SIZE));
      else
	session.print_warning (_F("skipping module %s, section %s %s table (too big: %zi > %zi)",
				  modname.c_str(), secname.c_str(), table.c_str(),
				  len, (size_t)MAX_UNWIND_TABLE_SIZE));
      data = NULL;
      len = 0;
      return;
    }

  // if it is the debug_line data, do not need the unwind flags to be defined
  if((table == "debug_line") || (table == "debug_line_str"))
    output << "#if defined(STP_NEED_LINE_DATA)\n";
  else
    output << "#if defined(STP_USE_DWARF_UNWINDER) && defined(STP_NEED_UNWIND_DATA)\n";
  output << "static uint8_t _stp_module_" << modindex << "_" << table;
  if (!secname.empty())
    output << "_" << secindex;
  output << "[] = \n";
  output << "  {";
  for (size_t i = 0; i < len; i++)
    {
      int h = ((uint8_t *)data)[i];
      output << h << ","; // decimal is less wordy than hex
      if ((i + 1) % 16 == 0)
	output << "\n" << "   ";
    }
  output << "};\n";
  if ((table == "debug_line") || (table == "debug_line_str"))
    output << "#endif /* STP_NEED_LINE_DATA */\n";
  else
    output << "#endif /* STP_USE_DWARF_UNWINDER && STP_NEED_UNWIND_DATA */\n";
}

static int
dump_unwindsym_cxt (Dwfl_Module *m,
		    unwindsym_dump_context *c,
		    const char *name, Dwarf_Addr base)
{
  string modname = name;
  unsigned stpmod_idx = c->stp_module_index;
  void *debug_frame = c->debug_frame;
  size_t debug_len = c->debug_len;
  void *debug_frame_hdr = c->debug_frame_hdr;
  size_t debug_frame_hdr_len = c->debug_frame_hdr_len;
  Dwarf_Addr debug_frame_off = c->debug_frame_off;
  void *eh_frame = c->eh_frame;
  void *eh_frame_hdr = c->eh_frame_hdr;
  size_t eh_len = c->eh_len;
  size_t eh_frame_hdr_len = c->eh_frame_hdr_len;
  Dwarf_Addr eh_addr = c->eh_addr;
  Dwarf_Addr eh_frame_hdr_addr = c->eh_frame_hdr_addr;
  void *debug_line = c->debug_line;
  size_t debug_line_len = c->debug_line_len;
  void *debug_line_str = c->debug_line_str;
  size_t debug_line_str_len = c->debug_line_str_len;

  dump_unwindsym_cxt_table(c->session, c->output, modname, stpmod_idx, "", 0,
			   "debug_frame", debug_frame, debug_len);

  dump_unwindsym_cxt_table(c->session, c->output, modname, stpmod_idx, "", 0,
			   "eh_frame", eh_frame, eh_len);

  dump_unwindsym_cxt_table(c->session, c->output, modname, stpmod_idx, "", 0,
			   "eh_frame_hdr", eh_frame_hdr, eh_frame_hdr_len);

  dump_unwindsym_cxt_table(c->session, c->output, modname, stpmod_idx, "", 0,
			   "debug_line", debug_line, debug_line_len);

  dump_unwindsym_cxt_table(c->session, c->output, modname, stpmod_idx, "", 0,
			   "debug_line_str", debug_line_str, debug_line_str_len);

  if (c->session.need_unwind && debug_frame == NULL && eh_frame == NULL)
    {
      // There would be only a small benefit to warning.  A user
      // likely can't do anything about this; backtraces for the
      // affected module would just get all icky heuristicy.
      // So only report in verbose mode.
      if (c->session.verbose > 2)
	c->session.print_warning ("No unwind data for " + modname
				  + ", " + dwfl_errmsg (-1));
    }

  if (c->session.need_lines && debug_line == NULL)
    {
      if (c->session.verbose > 2)
        c->session.print_warning ("No debug line data for " + modname + ", " +
                                  dwfl_errmsg (-1));
    }

  if (c->session.need_lines && debug_line_str == NULL)
    {
      if (c->session.verbose > 2)
        c->session.print_warning ("No debug line str data for " + modname + ", " +
                                  dwfl_errmsg (-1));
    }

  for (unsigned secidx = 0; secidx < c->seclist.size(); secidx++)
    {
      c->output << "static struct _stp_symbol "
                << "_stp_module_" << stpmod_idx<< "_symbols_" << secidx << "[] = {\n";

      string secname = c->seclist[secidx].first;
      Dwarf_Addr extra_offset;
      extra_offset = (secname == "_stext") ? c->stext_offset : 0;

      // Only include symbols if they will be used
      if (c->session.need_symbols)
	{
	  // We write out a *sorted* symbol table, so the runtime doesn't
	  // have to sort them later.
	  for (addrmap_t::iterator it = c->addrmap[secidx].begin();
	       it != c->addrmap[secidx].end(); it++)
	    {
	      // skip symbols that occur before our chosen base address
	      if (it->first < extra_offset)
		continue;

	      c->output << "  { 0x" << hex << it->first-extra_offset << dec
			<< ", " << lex_cast_qstring (it->second) << " },\n";
              // XXX: these literal strings all suffer ELF relocation bloat too.
              // See if the tapsets.cxx:dwarf_derived_probe_group::emit_module_decls
              // CALCIT hack could work here.
	    }
	}

      c->output << "};\n";

      /* For now output debug_frame index only in "magic" sections. */
      if (secname == ".dynamic" || secname == ".absolute"
	  || secname == ".text" || secname == "_stext")
	{
	  dump_unwindsym_cxt_table(c->session, c->output, modname, stpmod_idx, secname, secidx,
				   "debug_frame_hdr", debug_frame_hdr, debug_frame_hdr_len);
	}
    }

  c->output << "static struct _stp_section _stp_module_" << stpmod_idx<< "_sections[] = {\n";
  // For the kernel, executables (ET_EXEC) or shared libraries (ET_DYN)
  // there is just one section that covers the whole address space of
  // the module. For kernel modules (ET_REL) there can be multiple
  // sections that get relocated separately.
  for (unsigned secidx = 0; secidx < c->seclist.size(); secidx++)
    {
      c->output << "{\n"
                << ".name = " << lex_cast_qstring(c->seclist[secidx].first) << ",\n"
                << ".size = 0x" << hex << c->seclist[secidx].second << dec << ",\n"
                << ".symbols = _stp_module_" << stpmod_idx << "_symbols_" << secidx << ",\n"
                << ".num_symbols = " << c->addrmap[secidx].size() << ",\n";

      /* For now output debug_frame index only in "magic" sections. */
      string secname = c->seclist[secidx].first;
      if (debug_frame_hdr && (secname == ".dynamic" || secname == ".absolute"
			      || secname == ".text" || secname == "_stext"))
	{
	  c->output << "#if defined(STP_USE_DWARF_UNWINDER)"
		    << " && defined(STP_NEED_UNWIND_DATA)\n";

          c->output << ".debug_hdr = "
		    << "_stp_module_" << stpmod_idx
		    << "_debug_frame_hdr_" << secidx << ",\n";
          c->output << ".debug_hdr_len = " << debug_frame_hdr_len << ", \n";

	  Dwarf_Addr dwbias = 0;
	  dwfl_module_getdwarf (m, &dwbias);
	  c->output << ".sec_load_offset = 0x"
		    << hex << debug_frame_off - dwbias << dec << "\n";

	  c->output << "#else\n";
	  c->output << ".debug_hdr = NULL,\n";
	  c->output << ".debug_hdr_len = 0,\n";
	  c->output << ".sec_load_offset = 0\n";
	  c->output << "#endif /* STP_USE_DWARF_UNWINDER"
		    << " && STP_NEED_UNWIND_DATA */\n";

	}
      else
	{
	  c->output << ".debug_hdr = NULL,\n";
	  c->output << ".debug_hdr_len = 0,\n";
          if (c->session.need_lines && secname == ".text")
            {
              c->output << "#if defined(STP_NEED_LINE_DATA)\n";
              Dwarf_Addr dwbias = 0;
              dwfl_module_getdwarf (m, &dwbias);
              c->output << ".sec_load_offset = 0x"
                        << hex << debug_frame_off - dwbias << dec << "\n";
              c->output << "#else\n";
            }
	  c->output << ".sec_load_offset = 0\n";
          if (c->session.need_lines && secname == ".text")
            c->output << "#endif /* STP_NEED_LINE_DATA */\n";
	}

	c->output << "},\n";
    }
  c->output << "};\n";

  // Get the canonical path of the main file for comparison at runtime.
  // When given directly by the user through -d or in case of the kernel
  // name and path might differ. path should be used for matching.
  const char *mainfile;
  dwfl_module_info (m, NULL, NULL, NULL, NULL, NULL, &mainfile, NULL);

  // For user space modules store canonical path.
  // For kernel modules just the name itself.
  string mainpath = resolve_path(mainfile);
  string mainname;
  if (is_user_module(modname)) // userspace
    mainname = lex_cast_qstring (path_remove_sysroot(c->session,mainpath));
  else
    { // kernel module

      // If the module name is the full path to the ko, then we have to retrieve
      // the actual name by which the module will be known inside the kernel.
      // Otherwise, section relocations would be mismatched.
      if (is_fully_resolved(modname, c->session.sysroot, c->session.sysenv))
        mainname = lex_cast_qstring (modname_from_path(modname));
      else
        mainname = lex_cast_qstring (modname);
    }

  c->output << "static struct _stp_module _stp_module_" << stpmod_idx << " = {\n";
  c->output << ".name = " << mainname.c_str() << ",\n";
  c->output << ".path = " << lex_cast_qstring (path_remove_sysroot(c->session,mainpath)) << ",\n";
  c->output << ".eh_frame_addr = 0x" << hex << eh_addr << dec << ", \n";
  c->output << ".unwind_hdr_addr = 0x" << hex << eh_frame_hdr_addr
	    << dec << ", \n";

  if (debug_frame != NULL)
    {
      c->output << "#if defined(STP_USE_DWARF_UNWINDER) && defined(STP_NEED_UNWIND_DATA)\n";
      c->output << ".debug_frame = "
		<< "_stp_module_" << stpmod_idx << "_debug_frame, \n";
      c->output << ".debug_frame_len = " << debug_len << ", \n";
      c->output << "#else\n";
    }

  c->output << ".debug_frame = NULL,\n";
  c->output << ".debug_frame_len = 0,\n";

  if (debug_frame != NULL)
    c->output << "#endif /* STP_USE_DWARF_UNWINDER && STP_NEED_UNWIND_DATA*/\n";

  if (eh_frame != NULL)
    {
      c->output << "#if defined(STP_USE_DWARF_UNWINDER) && defined(STP_NEED_UNWIND_DATA)\n";
      c->output << ".eh_frame = "
		<< "_stp_module_" << stpmod_idx << "_eh_frame, \n";
      c->output << ".eh_frame_len = " << eh_len << ", \n";
      if (eh_frame_hdr)
        {
          c->output << ".unwind_hdr = "
                    << "_stp_module_" << stpmod_idx << "_eh_frame_hdr, \n";
          c->output << ".unwind_hdr_len = " << eh_frame_hdr_len << ", \n";
        }
      else
        {
          c->output << ".unwind_hdr = NULL,\n";
          c->output << ".unwind_hdr_len = 0,\n";
        }
      c->output << "#else\n";
    }

  c->output << ".eh_frame = NULL,\n";
  c->output << ".eh_frame_len = 0,\n";
  c->output << ".unwind_hdr = NULL,\n";
  c->output << ".unwind_hdr_len = 0,\n";
  if (eh_frame != NULL)
    c->output << "#endif /* STP_USE_DWARF_UNWINDER && STP_NEED_UNWIND_DATA*/\n";

  if (debug_line != NULL)
    {
      c->output << "#if defined(STP_NEED_LINE_DATA)\n";
      c->output << ".debug_line = "
		<< "_stp_module_" << stpmod_idx << "_debug_line, \n";
      c->output << ".debug_line_len = " << debug_line_len << ", \n";
      if (debug_line_str != NULL)
        {
          c->output << ".debug_line_str = "
                    << "_stp_module_" << stpmod_idx << "_debug_line_str, \n";
          c->output << ".debug_line_str_len = " << debug_line_str_len << ", \n";
        }
      c->output << "#else\n";
    }

  c->output << ".debug_line = NULL,\n";
  c->output << ".debug_line_len = 0,\n";
  c->output << ".debug_line_str = NULL,\n";
  c->output << ".debug_line_str_len = 0,\n";

  if (debug_line != NULL)
    c->output << "#endif /* STP_NEED_LINE_DATA */\n";

  c->output << ".sections = _stp_module_" << stpmod_idx << "_sections" << ",\n";
  c->output << ".num_sections = sizeof(_stp_module_" << stpmod_idx << "_sections)/"
            << "sizeof(struct _stp_section),\n";

  /* Don't save build-id if it is located before _stext.
   * This probably means that build-id will not be loaded at all and
   * happens for example with ARM kernel.  Allow user space modules since the
   * check fails for a shared object.
   *
   * See also:
   *    http://sourceware.org/ml/systemtap/2009-q4/msg00574.html
   */
  if (c->build_id_len > 0
      && (modname != "kernel" || (c->build_id_vaddr > base + c->stext_offset))) {
    c->output << ".build_id_bits = (unsigned char *)\"" ;
    for (int j=0; j<c->build_id_len;j++)
      c->output << "\\x" << hex
                << (unsigned short) *(c->build_id_bits+j) << dec;

    c->output << "\",\n";
    c->output << ".build_id_len = " << c->build_id_len << ",\n";

    /* XXX: kernel data boot-time relocation works differently from text.
       This hack assumes that offset between _stext and build id
       stays constant after relocation, but that's not necessarily
       correct either.  We may instead need a relocation basis different
       from _stext, such as __start_notes.  */
    if (modname == "kernel")
      c->output << ".build_id_offset = 0x" << hex << c->build_id_vaddr - (base + c->stext_offset)
                << dec << ",\n";
    // ET_DYN: task finder gives the load address. ET_EXEC: this is absolute address
    else
      c->output << ".build_id_offset = 0x" << hex
                << c->build_id_vaddr /* - base */
                << dec << ",\n";
  } else
    c->output << ".build_id_len = 0,\n";

  //initialize the note section representing unloaded
  c->output << ".notes_sect = 0,\n";

  c->output << "};\n\n";

  c->undone_unwindsym_modules.erase (modname);

  // release various malloc'd tables
  // if (eh_frame_hdr) free (eh_frame_hdr); -- nope, this one comes from the elf image in memory
  if (debug_frame_hdr) free (debug_frame_hdr);

  return DWARF_CB_OK;
}

static void dump_kallsyms(unwindsym_dump_context *c)
{
  ifstream kallsyms("/proc/kallsyms");
  unsigned stpmod_idx = c->stp_module_index;
  string line;
  unsigned size = 0;
  Dwarf_Addr start = 0;
  Dwarf_Addr end = 0;
  Dwarf_Addr prev = 0;

  c->output << "static struct _stp_symbol "
            << "_stp_module_" << stpmod_idx << "_symbols_" << 0 << "[] = {\n";

  while (getline(kallsyms, line))
    {
      Dwarf_Addr addr;
      string name;
      string module;
      char type;
      istringstream iss(line);

      iss >> hex >> addr >> type >> name >> module;

      if (name == KERNEL_RELOC_SYMBOL)
        start = addr;
      else if (name == "_end" || module != "")
        {
          end = prev;
          break;
        }

      if (!start || addr == 0 || prev == addr)
        continue;

      c->output << "  { 0x" << hex << addr - start << dec
			<< ", " << lex_cast_qstring(name) << " },\n";

      size++;
      prev = addr;
    }

  // PR30321 apply privilege separation for passes 2/3/4, esp. if invoked as root
  if ((getuid() != 0) && (size == 0))
    c->session.print_warning (_F("No kallsyms found.  Your uid=%d.", getuid()));

  c->output << "};\n";
  c->output << "static struct _stp_section _stp_module_" << stpmod_idx << "_sections[] = {\n";
  c->output << "{\n"
            << ".name = " << lex_cast_qstring(KERNEL_RELOC_SYMBOL) << ",\n"
            << ".size = 0x" << hex << end - start << dec << ",\n"
            << ".symbols = _stp_module_" << stpmod_idx << "_symbols_" << 0 << ",\n"
            << ".num_symbols = " << size << ",\n";
  c->output << "},\n";
  c->output << "};\n";
  c->output << "static struct _stp_module _stp_module_" << stpmod_idx << " = {\n";
  c->output << ".name = " << lex_cast_qstring("kernel") << ",\n";
  c->output << ".sections = _stp_module_" << stpmod_idx << "_sections" << ",\n";
  c->output << ".num_sections = sizeof(_stp_module_" << stpmod_idx << "_sections)/"
            << "sizeof(struct _stp_section),\n";
  c->output << "};\n\n";

  c->undone_unwindsym_modules.erase("kernel");
  c->stp_module_index++;
}

static int
dump_unwindsyms (Dwfl_Module *m,
                 void **userdata __attribute__ ((unused)),
                 const char *name,
                 Dwarf_Addr base,
                 void *arg)
{
  if (pending_interrupts)
    return DWARF_CB_ABORT;

  unwindsym_dump_context *c = (unwindsym_dump_context*) arg;
  assert (c);

  // skip modules/files we're not actually interested in
  string modname = name;
  if (c->session.unwindsym_modules.find(modname)
      == c->session.unwindsym_modules.end())
    return DWARF_CB_OK;

  if (c->session.verbose > 1)
    clog << "dump_unwindsyms " << name
         << " index=" << c->stp_module_index
         << " base=0x" << hex << base << dec << endl;

  // We want to extract several bits of information:
  //
  // - parts of the program-header that map the file's physical offsets to the text section
  // - section table: just a list of section (relocation) base addresses
  // - symbol table of the text-like sections, with all addresses relativized to each base
  // - the contents of .debug_frame and/or .eh_frame section, for unwinding purposes

  int res = DWARF_CB_OK;

  c->build_id_len = 0;
  c->build_id_vaddr = 0;
  c->build_id_bits = NULL;
  res = dump_build_id (m, c, name, base);

  c->seclist.clear();
  if (res == DWARF_CB_OK)
    res = dump_section_list(m, c, name, base);

  // We always need to check the symbols of the kernel if we use it,
  // for the extra_offset (also used for build_ids) and possibly
  // stp_kretprobe_trampoline_addr for the dwarf unwinder.
  c->addrmap.clear();
  if (res == DWARF_CB_OK
      && (c->session.need_symbols || ! strcmp(name, "kernel")))
    res = dump_symbol_tables (m, c, name, base);

  c->debug_frame = NULL;
  c->debug_len = 0;
  c->debug_frame_hdr = NULL;
  c->debug_frame_hdr_len = 0;
  c->debug_frame_off = 0;
  c->eh_frame = NULL;
  c->eh_frame_hdr = NULL;
  c->eh_len = 0;
  c->eh_frame_hdr_len = 0;
  c->eh_addr = 0;
  c->eh_frame_hdr_addr = 0;
  if (res == DWARF_CB_OK && c->session.need_unwind)
    res = dump_unwind_tables (m, c, name, base);

  c->debug_line = NULL;
  c->debug_line_len = 0;
  c->debug_line_str = NULL;
  c->debug_line_str_len = 0;
  if (res == DWARF_CB_OK && c->session.need_lines)
    // we dont set res = dump_line_tables() because unwindsym stuff should still
    // get dumped to the output even if gathering debug_line data fails
    (void) dump_line_tables (m, c, name, base);

  /* And finally dump everything collected in the output. */
  if (res == DWARF_CB_OK)
    res = dump_unwindsym_cxt (m, c, name, base);

  if (res == DWARF_CB_OK)
    c->stp_module_index++;

  return res;
}


// Emit symbol table & unwind data, plus any calls needed to register
// them with the runtime.
void emit_symbol_data_done (unwindsym_dump_context*, systemtap_session&);


void
add_unwindsym_iol_callback (set<string> *added, const char *data)
{
  added->insert (string (data));
}


static int
query_module (Dwfl_Module *mod,
              void **,
              const char *,
              Dwarf_Addr,
              struct dwflpp *dwflpp)
{
  dwflpp->focus_on_module(mod, NULL);
  return DWARF_CB_OK;
}


void
add_unwindsym_ldd (systemtap_session &s)
{
  std::set<std::string> added;

  for (std::set<std::string>::iterator it = s.unwindsym_modules.begin();
       it != s.unwindsym_modules.end();
       it++)
    {
      string modname = *it;
      assert (modname.length() != 0);
      if (! is_user_module (modname)) continue;

      dwflpp mod_dwflpp (s, modname, false);
      mod_dwflpp.iterate_over_modules(&query_module, &mod_dwflpp);
      if (mod_dwflpp.module) // existing binary
        {
          assert (mod_dwflpp.module_name != "");
          mod_dwflpp.iterate_over_libraries (&add_unwindsym_iol_callback, &added);
        }
    }

  s.unwindsym_modules.insert (added.begin(), added.end());
}

static int find_vdso(const char *path, const struct stat *, int type)
{
  if (type == FTW_F)
    {
      /* Assume that if the path's basename starts with 'vdso' and
       * ends with '.so', it is the vdso.
       *
       * Note that this logic should match up with the logic in the
       * _stp_vma_match_vdso() function in runtime/vma.c. */
      const char *name = strrchr(path, '/');
      if (name)
	{
	  const char *ext;

	  name++;
	  ext = strrchr(name, '.');
	  if (ext
	      && strncmp("vdso", name, 4) == 0
	      && strcmp(".so", ext) == 0)
	    vdso_paths.insert(path);
	}
    }
  return 0;
}

void
add_unwindsym_vdso (systemtap_session &s)
{
  // This is to disambiguate between -r REVISION vs -r BUILDDIR.
  // See also dwflsetup.c (setup_dwfl_kernel). In case of only
  // having the BUILDDIR we need to do a deep search (the specific
  // arch name dir in the kernel build tree is unknown).
  string vdso_dir;
  if (s.kernel_build_tree == string(s.sysroot + "/lib/modules/"
				    + s.kernel_release
				    + "/build"))
    vdso_dir = s.sysroot + "/lib/modules/" + s.kernel_release + "/vdso";
  else
    vdso_dir = s.kernel_build_tree + "/arch/";

  if (s.verbose > 1)
    clog << _("Searching for vdso candidates: ") << vdso_dir << endl;

  ftw(vdso_dir.c_str(), find_vdso, 1);

  for (set<string>::iterator it = vdso_paths.begin();
       it != vdso_paths.end();
       it++)
    {
      s.unwindsym_modules.insert(*it);
      if (s.verbose > 1)
	clog << _("vdso candidate: ") << *it << endl;
    }
}

static void
prepare_symbol_data (systemtap_session& s)
{
  // step 0: run ldd on any user modules if requested
  if (s.unwindsym_ldd)
    add_unwindsym_ldd (s);
  // step 0.5: add vdso(s) when vma tracker was requested
  if (vma_tracker_enabled (s))
    add_unwindsym_vdso (s);
  // NB: do this before the ctx.unwindsym_modules copy is taken
}

void
emit_symbol_data (systemtap_session& s)
{
  ofstream kallsyms_out (s.symbols_source.c_str ());

  if (s.runtime_usermode_p ())
    {
      kallsyms_out << "#include \"stap_common.h\"\n"
        "#include <sym.h>\n";
    }
  else
    {
      kallsyms_out << "#include <linux/module.h>\n"
        "#include <linux/kernel.h>\n"
        "#include <sym.h>\n"
        "#include \"stap_common.h\"\n";
    }

  vector<pair<string,unsigned> > seclist;
  map<unsigned, addrmap_t> addrmap;
  unwindsym_dump_context ctx = { s, kallsyms_out,
				 0, /* module index */
				 0, NULL, 0, /* build_id len, bits, vaddr */
				 ~0UL, /* stp_kretprobe_trampoline_addr */
				 0, /* stext_offset */
				 seclist, addrmap,
				 NULL, /* debug_frame */
				 0, /* debug_len */
				 NULL, /* debug_frame_hdr */
				 0, /* debug_frame_hdr_len */
				 0, /* debug_frame_off */
				 NULL, /* eh_frame */
				 NULL, /* eh_frame_hdr */
				 0, /* eh_len */
				 0, /* eh_frame_hdr_len */
				 0, /* eh_addr */
				 0, /* eh_frame_hdr_addr */
				 NULL, /* debug_line */
				 0, /* debug_line_len */
				 NULL, /* debug_line_str */
				 0, /* debug_line_str_len */
				 s.unwindsym_modules };

  // Micro optimization, mainly to speed up tiny regression tests
  // using just begin probe.
  if (s.unwindsym_modules.size () == 0)
    {
      emit_symbol_data_done(&ctx, s);
      return;
    }

  // ---- step 1: process any kernel modules listed
  set<string> offline_search_modules;
  unsigned count;
  for (set<string>::iterator it = s.unwindsym_modules.begin();
       it != s.unwindsym_modules.end();
       it++)
    {
      string foo = *it;
      if (! is_user_module (foo)) /* Omit user-space, since we're only
				     using this for kernel space
				     offline searches. */
        offline_search_modules.insert (foo);
    }
  Dwfl *dwfl = setup_dwfl_kernel (offline_search_modules, &count, s);
  /* NB: It's not an error to find a few fewer modules than requested.
     There might be third-party modules loaded (e.g. uprobes). */
  /* DWFL_ASSERT("all kernel modules found",
     count >= offline_search_modules.size()); */

  ptrdiff_t off = 0;
  do
    {
      assert_no_interrupts();
      if (ctx.undone_unwindsym_modules.empty()) break;
      off = dwfl_getmodules (dwfl, &dump_unwindsyms, (void *) &ctx, off);
    }
  while (off > 0);
  DWFL_ASSERT("dwfl_getmodules", off == 0);
  dwfl_end(dwfl);

  // ---- step 2: process any user modules (files) listed
  for (std::set<std::string>::iterator it = s.unwindsym_modules.begin();
       it != s.unwindsym_modules.end();
       it++)
    {
      string modname = *it;
      assert (modname.length() != 0);
      if (! is_user_module (modname)) continue;
      Dwfl *dwfl = setup_dwfl_user (modname);
      if (dwfl != NULL) // tolerate missing data; will warn below
        {
          ptrdiff_t off = 0;
          do
            {
              assert_no_interrupts();
              if (ctx.undone_unwindsym_modules.empty()) break;
              off = dwfl_getmodules (dwfl, &dump_unwindsyms, (void *) &ctx, off);
            }
          while (off > 0);
          DWFL_ASSERT("dwfl_getmodules", off == 0);
        }
      dwfl_end(dwfl);
    }

  // Use /proc/kallsyms if debuginfo not found.
  if (ctx.undone_unwindsym_modules.find("kernel") != ctx.undone_unwindsym_modules.end())
    dump_kallsyms(&ctx);

  emit_symbol_data_done (&ctx, s);
}

void
self_unwind_declarations(unwindsym_dump_context *ctx)
{
  ctx->output << "static uint8_t _stp_module_self_eh_frame [] = {0,};\n";
  ctx->output << "struct _stp_symbol _stp_module_self_symbols_0[] = {{0},};\n";
  ctx->output << "struct _stp_symbol _stp_module_self_symbols_1[] = {{0},};\n";
  ctx->output << "struct _stp_section _stp_module_self_sections[] = {\n";
  ctx->output << "{.name = \".symtab\", .symbols = _stp_module_self_symbols_0, .num_symbols = 0},\n";
  ctx->output << "{.name = \".text\", .symbols = _stp_module_self_symbols_1, .num_symbols = 0},\n";
  ctx->output << "};\n";
  ctx->output << "struct _stp_module _stp_module_self = {\n";
  ctx->output << ".name = \"stap_self_tmp_value\",\n";
  ctx->output << ".path = \"stap_self_tmp_value\",\n";
  ctx->output << ".num_sections = 2,\n";
  ctx->output << ".sections = _stp_module_self_sections,\n";
  ctx->output << ".eh_frame = _stp_module_self_eh_frame,\n";
  ctx->output << ".eh_frame_len = 0,\n";
  ctx->output << ".unwind_hdr_addr = 0x0,\n";
  ctx->output << ".unwind_hdr = NULL,\n";
  ctx->output << ".unwind_hdr_len = 0,\n";
  ctx->output << ".debug_frame = NULL,\n";
  ctx->output << ".debug_frame_len = 0,\n";
  ctx->output << ".debug_line = NULL,\n";
  ctx->output << ".debug_line_len = 0,\n";
  ctx->output << ".debug_line_str = NULL,\n";
  ctx->output << ".debug_line_str_len = 0,\n";
  ctx->output << "};\n";
}

void
emit_symbol_data_done (unwindsym_dump_context *ctx, systemtap_session& s)
{
  // Add a .eh_frame terminator dummy object file, much like
  // libgcc/crtstuff.c's EH_FRAME_SECTION_NAME closer.  We need this in
  // order for runtime/sym.c 
  translator_output *T_800 = s.op_create_auxiliary(true);
  T_800->newline() << "__extension__ unsigned int T_800 []"; // assumed 32-bits wide
  T_800->newline(1) << "__attribute__((used, section(\".eh_frame\"), aligned(4)))";
  T_800->newline() << "= { 0 };";
  T_800->newline(-1);
  T_800->assert_0_indent (); // flush to disk

  // Print out a definition of the runtime's _stp_modules[] globals.
  ctx->output << "\n";
  self_unwind_declarations(ctx);
   ctx->output << "struct _stp_module *_stp_modules [] = {\n";
  for (unsigned i=0; i<ctx->stp_module_index; i++)
    {
      ctx->output << "& _stp_module_" << i << ",\n";
    }
  ctx->output << "& _stp_module_self,\n";
  ctx->output << "};\n";
  ctx->output << "const unsigned _stp_num_modules = ARRAY_SIZE(_stp_modules);\n";

  ctx->output << "unsigned long _stp_kretprobe_trampoline = ";
  // Special case for -1, which is invalid in hex if host width > target width.
  if (ctx->stp_kretprobe_trampoline_addr == (unsigned long) -1)
    ctx->output << "-1;\n";
  else
    ctx->output << "0x" << hex << ctx->stp_kretprobe_trampoline_addr << dec
		<< ";\n";

  // Some nonexistent modules may have been identified with "-d".  Note them.
  if (! s.suppress_warnings)
    for (set<string>::iterator it = ctx->undone_unwindsym_modules.begin();
	 it != ctx->undone_unwindsym_modules.end();
	 it ++)
      s.print_warning (_("missing unwind/symbol data for module '")
		       + (*it) + "'");
}

struct recursion_info: public traversing_visitor
{
  recursion_info (systemtap_session& s): sess(s), nesting_max(0), recursive(false) {}
  systemtap_session& sess;
  unsigned nesting_max;
  bool recursive;
  std::vector <functiondecl *> current_nesting;

  void visit_functioncall (functioncall* e) {
    traversing_visitor::visit_functioncall (e); // for arguments

    for (unsigned fd = 0; fd < e->referents.size(); fd++)
      {
        functiondecl* referent = e->referents[fd];
        // check for nesting level
        unsigned nesting_depth = current_nesting.size() + 1;
        if (nesting_max < nesting_depth)
          {
            if (sess.verbose > 3)
              clog << _F("identified max-nested function: %s (%d)",
                         referent->name.to_string().c_str(), nesting_depth) << endl;
            nesting_max = nesting_depth;
          }

        // check for (direct or mutual) recursion
        for (unsigned j=0; j<current_nesting.size(); j++)
          if (current_nesting[j] == referent)
            {
              recursive = true;
              if (sess.verbose > 3)
                clog << _F("identified recursive function: %s",
                           referent->name.to_string().c_str()) << endl;
              return;
            }

        // non-recursive traversal
        current_nesting.push_back (referent);
        referent->body->visit (this);
        current_nesting.pop_back ();
      }
  }
};


void translate_runtime(systemtap_session& s)
{
  s.op->newline() << "#define STAP_MSG_RUNTIME_H_01 "
                  << lex_cast_qstring(_("myproc-unprivileged tapset function called "
                                        "without is_myproc checking for pid %d (euid %d)"));

  s.op->newline() << "#define STAP_MSG_LOC2C_01 "
                  << lex_cast_qstring(_("read fault [man error::fault] at 0x%lx"));
  s.op->newline() << "#define STAP_MSG_LOC2C_02 "
                  << lex_cast_qstring(_("write fault [man error::fault] at 0x%lx"));
  s.op->newline() << "#define STAP_MSG_LOC2C_03 "
                  << lex_cast_qstring(_("divide by zero in DWARF operand (%s)"));
  s.op->newline() << "#define STAP_MSG_LOC2C_04 "
                  << lex_cast_qstring(_("register access fault [man error::fault]"));
}


int
prepare_translate_pass (systemtap_session& s)
{
  int rc = 0;
  try
    {
      prepare_symbol_data (s);
    }
  catch (const semantic_error& e)
    {
      s.print_error (e);
      rc = 1;
    }

  return rc;
}


int
translate_pass (systemtap_session& s)
{
  int rc = 0;
  string comm_hdr_file = s.tmpdir + "/stap_common.h";

  s.op = new translator_output (s.translated_source);
  s.op->new_common_header (comm_hdr_file);

  // additional outputs might be found in s.auxiliary_outputs
  c_unparser cup (& s);
  s.up = & cup;
  translate_runtime(s);

  try
    {
      int64_t major=0, minor=0;
      try
	{
	  vector<string> versions;
	  tokenize (s.compatible, versions, ".");
	  if (versions.size() >= 1)
	    major = lex_cast<int64_t> (versions[0]);
	  if (versions.size() >= 2)
	    minor = lex_cast<int64_t> (versions[1]);
	  if (versions.size() >= 3 && s.verbose > 1)
	    clog << _F("ignoring extra parts of compat version: %s", s.compatible.c_str()) << endl;
	}
      catch (const runtime_error&)
	{
	  throw SEMANTIC_ERROR(_F("parse error in compatibility version: %s", s.compatible.c_str()));
	}
      if (major < 0 || major > 255 || minor < 0 || minor > 255)
	throw SEMANTIC_ERROR(_F("compatibility version out of range: %s", s.compatible.c_str()));
      s.op->newline() << "#define STAP_VERSION(a, b) ( ((a) << 8) + (b) )";
      s.op->newline() << "#ifndef STAP_COMPAT_VERSION";
      s.op->newline() << "#define STAP_COMPAT_VERSION STAP_VERSION("
		      << major << ", " << minor << ")";
      s.op->newline() << "#endif";

      // Some of our generated C code can trigger this harmless diagnostic.
      s.op->newline() << "#pragma GCC diagnostic ignored \"-Wtautological-compare\"";

      recursion_info ri (s);

      // NB: we start our traversal from the s.functions[] rather than the probes.
      // We assume that each function is called at least once, or else it would have
      // been elided already.
      for (map<string,functiondecl*>::iterator it = s.functions.begin(); it != s.functions.end(); it++)
	{
          functiondecl *fd = it->second;
          fd->body->visit (& ri);
	}

      if (s.verbose > 1)
        clog << _F("function recursion-analysis: max-nesting %d %s", ri.nesting_max,
                  (ri.recursive ? _(" recursive") : _(" non-recursive"))) << endl;
      unsigned nesting = ri.nesting_max + 1; /* to account for initial probe->function call */
      if (ri.recursive) nesting += 10;

      // This is at the very top of the file.
      // All "static" defines (not dependend on session state).
      s.op->newline() << "#include \"runtime_defines.h\"";
      if (s.perf_derived_probes)
	s.op->newline() << "#define _HAVE_PERF_ 1";
      s.op->newline() << "#include \"linux/perf_read.h\"";

      // Generated macros describing the privilege level required to load/run this module.
      s.op->newline() << "#define STP_PR_STAPUSR 0x" << hex << pr_stapusr << dec;
      s.op->newline() << "#define STP_PR_STAPSYS 0x" << hex << pr_stapsys << dec;
      s.op->newline() << "#define STP_PR_STAPDEV 0x" << hex << pr_stapdev << dec;
      s.op->newline() << "#define STP_PRIVILEGE 0x" << hex << s.privilege << dec;

      // Generate a section containing a mask of the privilege levels required to load/run this
      // module.
      s.op->newline() << "int stp_required_privilege "
		      << "__attribute__ ((section (\"" << STAP_PRIVILEGE_SECTION <<"\")))"
		      << " = STP_PRIVILEGE;";

      s.op->newline() << "#include \"stap_common.h\"";

      if (s.runtime_usermode_p ())
        {
          s.op->hdr->line() << "#include <stdint.h>";
          s.op->hdr->newline() << "#include <stddef.h>";
          s.op->hdr->newline() << "struct task_struct;";
          s.op->hdr->newline() << "#define __must_be_array(arr) 0";
          s.op->hdr->newline() << "#define ARRAY_SIZE(arr) (sizeof(arr) "
            "/ sizeof((arr)[0]) + __must_be_array(arr))";
        }

      s.op->hdr->newline() << "#ifndef MAXNESTING";
      s.op->hdr->newline() << "#define MAXNESTING " << nesting;
      s.op->hdr->newline() << "#endif";

      // Generated macros specifying how much storage is required for
      // regexp subexpressions. (TODOXXX Skip when there are no DFAs?)
      s.op->hdr->newline() << "#define STAPREGEX_MAX_MAP " << s.dfa_maxmap;
      s.op->hdr->newline() << "#define STAPREGEX_MAX_TAG " << s.dfa_maxtag;

      s.op->hdr->newline() << "#define STP_SKIP_BADVARS " << (s.skip_badvars ? 1 : 0);

      if (s.bulk_mode)
	  s.op->hdr->newline() << "#define STP_BULKMODE";

      if (s.timing || s.monitor)
	s.op->hdr->newline() << "#define STP_TIMING";
      if (!isatty(STDOUT_FILENO))
        {
          s.op->hdr->newline() << "#ifndef STP_FORCE_STDOUT_TTY";
          s.op->hdr->newline() << "#define STP_STDOUT_NOT_ATTY";
          s.op->hdr->newline() << "#endif";
        }

      if (s.need_unwind)
	s.op->hdr->newline() << "#define STP_NEED_UNWIND_DATA 1";

      if (s.need_lines)
        s.op->hdr->newline() << "#define STP_NEED_LINE_DATA 1";

      // Emit the total number of probes (not regarding merged probe handlers)
      s.op->hdr->newline() << "#define STP_PROBE_COUNT " << s.probes.size();

      s.op->hdr->newline() << "#if (defined(__arm__) || defined(__i386__) "
        "|| defined(__x86_64__) || defined(__powerpc64__)) "
        "|| defined (__s390x__) || defined(__aarch64__) || defined(__mips__)\n"
        "#ifdef STP_NEED_UNWIND_DATA\n"
        "#ifndef STP_USE_DWARF_UNWINDER\n"
        "#define STP_USE_DWARF_UNWINDER\n"
        "#endif\n"
        "#endif\n"
        "#endif";

      s.op->hdr->close ();

      // Emit systemtap_module_refresh() prototype so we can reference it
      s.op->newline() << "static void systemtap_module_refresh (const char* modname);";

      // Be sure to include runtime.h before any real code.
      s.op->newline() << "#include \"runtime.h\"";

      if (!s.runtime_usermode_p())
        {
          // When on-the-fly [dis]arming is used, module_refresh can be called from
          // both the module notifier, as well as when probes need to be
          // armed/disarmed. We need to protect it to ensure it's only run one at a
          // time.
          s.op->newline() << "#include <linux/mutex.h>";
          s.op->newline() << "static DEFINE_MUTEX(module_refresh_mutex);";

          // For some probes, on-the-fly support is provided through a
          // background timer (module_refresh_timer). We need to disable that
          // part if hrtimers are not supported.
          s.op->newline() << "#include <linux/version.h>";
          s.op->newline() << "#define STP_ON_THE_FLY_TIMER_ENABLE";
        }

      // Emit embeds ahead of time, in case they affect context layout
      for (unsigned i=0; i<s.embeds.size(); i++)
        {
          s.op->newline() << s.embeds[i]->code << "\n";
        }

      s.up->emit_common_header (); // context etc.

      if (s.need_unwind)
	s.op->newline() << "#include \"stack.c\"";

      s.op->newline() << "#include \"sym2.c\"";

      if (s.globals.size()>0)
	{
	  s.op->newline() << "struct stp_globals {";
	  s.op->indent(1);
	  for (unsigned i=0; i<s.globals.size(); i++)
	    {
	      s.up->emit_global (s.globals[i]);
	    }
	  s.op->newline(-1) << "};";

	  // We only need to statically initialize globals in kernel modules,
	  // where module parameters may want to override the script's value.  In
	  // stapdyn, the globals are actually part of the dynamic shared memory,
	  // and the static structure is merely used as a source of default values.
	  s.op->newline();
	  if (!s.runtime_usermode_p ())
	    s.op->newline() << "static struct stp_globals stp_global = {";
	  else
	   {
	     s.op->newline() << "static struct {";
	     s.op->indent(1);
	     for (unsigned i=0; i<s.globals.size(); i++)
	       {
		 assert_no_interrupts();
                 s.up->emit_global_init_type (s.globals[i]);
	       }
	     s.op->newline(-1) << "} stp_global_init = {";
	   }
	  s.op->newline(1);
	  for (unsigned i=0; i<s.globals.size(); i++)
	    {
	      assert_no_interrupts();
              s.up->emit_global_init (s.globals[i]);
	    }
	  s.op->newline(-1) << "};";

	  s.op->assert_0_indent();
	}
      else
        // stp_runtime_session wants to incorporate globals, but it
        // can be empty
	s.op->newline() << "struct stp_globals {};";

      // Common (static atomic) state of the stap session.
      s.op->newline();
      s.op->newline() << "#include \"common_session_state.h\"";

      s.op->newline() << "#include \"probe_lock.h\" ";

      s.op->newline() << "#ifdef STAP_NEED_GETTIMEOFDAY";
      s.op->newline() << "#include \"time.c\"";  // Don't we all need more?
      s.op->newline() << "#endif";

      for (map<string,stapdfa*>::iterator it = s.dfas.begin(); it != s.dfas.end(); it++)
        {
          assert_no_interrupts();
          s.op->newline();
          try
            {
              it->second->emit_declaration (s.op);
            }
          catch (const semantic_error &e)
            {
              s.print_error(e);
            }
        }
      s.op->assert_0_indent();

      for (map<string,functiondecl*>::iterator it = s.functions.begin(); it != s.functions.end(); it++)
	{
          assert_no_interrupts();
	  s.op->newline();
	  s.up->emit_functionsig (it->second);
	}
      s.op->assert_0_indent();


      // Let's find some stats for the embedded pp strings.  Maybe they
      // are small and uniform enough to justify putting char[MAX]'s into
      // the array instead of relocated char*'s.
      size_t pp_max = 0, pn_max = 0, location_max = 0, derivation_max = 0;
      size_t pp_tot = 0, pn_tot = 0, location_tot = 0, derivation_tot = 0;
      for (unsigned i=0; i<s.probes.size(); i++)
        {
          derived_probe* p = s.probes[i];
#define DOIT(var,expr) do {                             \
        size_t var##_size = (expr) + 1;                 \
        var##_max = max (var##_max, var##_size);        \
        var##_tot += var##_size; } while (0)
          DOIT(pp, lex_cast_qstring(*p->sole_location()).size());
          DOIT(pn, lex_cast_qstring(*p->script_location()).size());
          DOIT(location, lex_cast_qstring(p->tok->location).size());
          DOIT(derivation, lex_cast_qstring(p->derived_locations()).size());
#undef DOIT
        }

      // Decide whether it's worthwhile to use char[] or char* by comparing
      // the amount of average waste (max - avg) to the relocation data size
      // (3 native long words).
#define CALCIT(var)                                                             \
      if (s.verbose > 2)                                                        \
        clog << "adapt " << #var << ":" << var##_max << "max - " << var##_tot << "/" << s.probes.size() << "tot =>"; \
      if ((var##_max-(var##_tot/s.probes.size())) < (3 * sizeof(void*)))        \
        {                                                                       \
          s.op->newline() << "const char " << #var << "[" << var##_max << "];"; \
          if (s.verbose > 2)                                                    \
            clog << "[]" << endl;                                               \
        }                                                                       \
      else                                                                      \
        {                                                                       \
          s.op->newline() << "const char * const " << #var << ";";              \
          if (s.verbose > 2)                                                    \
            clog << "*" << endl;                                                \
        }

      s.op->newline();
      s.op->newline() << "struct stap_probe {";
      s.op->newline(1) << "const size_t index;";
      s.op->newline() << "void (* const ph) (struct context*);";
      s.op->newline() << "unsigned cond_enabled:1;"; // just one bit required
      s.op->newline() << "#if defined(STP_TIMING) || defined(STP_ALIBI)";
      CALCIT(location);
      CALCIT(derivation);
      s.op->newline() << "#define STAP_PROBE_INIT_TIMING(L, D) "
                      << ".location=(L), .derivation=(D),";
      s.op->newline() << "#else";
      s.op->newline() << "#define STAP_PROBE_INIT_TIMING(L, D)";
      s.op->newline() << "#endif";
      CALCIT(pp);
      s.op->newline() << "#ifdef STP_NEED_PROBE_NAME";
      CALCIT(pn);
      s.op->newline() << "#define STAP_PROBE_INIT_NAME(PN) .pn=(PN),";
      s.op->newline() << "#else";
      s.op->newline() << "#define STAP_PROBE_INIT_NAME(PN)";
      s.op->newline() << "#endif";
      s.op->newline() << "#define STAP_PROBE_INIT(I, PH, PP, PN, L, D) "
                      << "{ .index=(I), .ph=(PH), .cond_enabled=1, .pp=(PP), "
                      << "STAP_PROBE_INIT_NAME(PN) "
                      << "STAP_PROBE_INIT_TIMING(L, D) "
                      << "}";
      s.op->newline(-1) << "};";
      s.op->newline() << "static struct stap_probe stap_probes[];";
      s.op->assert_0_indent();
#undef CALCIT

      // Run a varuse_collecting_visitor over probes that need global
      // variable locks.  We'll use this information later in
      // emit_lock()/emit_unlock().
      for (unsigned i=0; i<s.probes.size(); i++)
	{
          assert_no_interrupts();
          s.probes[i]->session_index = i;
          if (s.probes[i]->needs_global_locks())
	    s.probes[i]->body->visit (&cup.vcv_needs_global_locks);
          // XXX: also visit s.probes[i]->sole_condition() ?
	}
      s.op->assert_0_indent();

      for (unsigned i=0; i<s.probes.size(); i++)
        {
          assert_no_interrupts();
          s.up->emit_probe (s.probes[i]);
        }
      s.op->assert_0_indent();

      s.op->newline() << "static struct stap_probe stap_probes[] = {";
      s.op->indent(1);
      for (unsigned i=0; i<s.probes.size(); ++i)
        {
          derived_probe* p = s.probes[i];
          s.op->newline() << "STAP_PROBE_INIT(" << i << ", &" << p->name() << ", "
                          << lex_cast_qstring (*p->sole_location()) << ", "
                          << lex_cast_qstring (*p->script_location()) << ", "
                          << lex_cast_qstring (p->tok->location) << ", "
                          << lex_cast_qstring (p->derived_locations()) << "),";
        }
      s.op->newline(-1) << "};";

      if (s.runtime_usermode_p())
        {
          s.op->newline() << "static const char* stp_probe_point(size_t index) {";
          s.op->newline(1) << "if (index < ARRAY_SIZE(stap_probes))";
          s.op->newline(1) << "return stap_probes[index].pp;";
          s.op->newline(-1) << "return NULL;";
          s.op->newline(-1) << "}";
          s.op->assert_0_indent();
        }

      for (map<string,functiondecl*>::iterator it = s.functions.begin(); it != s.functions.end(); it++)
        {
          assert_no_interrupts();
          s.op->newline();
          s.up->emit_function (it->second);
        }

      s.op->assert_0_indent();
      s.op->newline();
      s.up->emit_module_init ();
      s.op->assert_0_indent();
      s.op->newline();
      s.up->emit_module_refresh ();
      s.op->assert_0_indent();
      s.op->newline();
      s.up->emit_module_exit ();
      s.op->assert_0_indent();
      s.up->emit_kernel_module_init ();
      s.op->assert_0_indent();
      s.up->emit_kernel_module_exit ();
      s.op->assert_0_indent();
      s.op->newline();

      emit_symbol_data (s);

      s.op->newline() << "MODULE_DESCRIPTION(\"systemtap-generated probe\");";
      s.op->newline() << "MODULE_LICENSE(\"GPL\");";

      for (unsigned i = 0; i < s.modinfos.size(); i++)
        {
          const string& mi = s.modinfos[i];
          size_t loc = mi.find('=');
          string tag = mi.substr (0, loc);
          string value = mi.substr (loc+1);
          s.op->newline() << "MODULE_INFO(" << tag << "," << lex_cast_qstring(value) << ");";
        }

      s.op->assert_0_indent();

      if (s.runtime_usermode_p())
        s.up->emit_global_init_setters();
      else
        // PR10298: attempt to avoid collisions with symbols
        for (unsigned i=0; i<s.globals.size(); i++)
          {
            s.op->newline();
            s.up->emit_global_param (s.globals[i]);
          }
      s.op->assert_0_indent();
    }
  catch (const semantic_error& e)
    {
      s.print_error (e);
    }

  s.op->line() << "\n";

  delete s.op;
  s.op = 0;
  s.up = 0;

 for (unsigned i=0; i<s.auxiliary_outputs.size(); i++)
   s.auxiliary_outputs[i]->close();
  
  return rc + s.num_errors();
}

/* vim: set sw=2 ts=8 cino=>4,n-2,{2,^-2,t0,(0,u0,w1,M1 : */