1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
|
// This header include/tao/json/external/double.hpp contains
// modified portions of the double-conversion library from
// https://www.github.com/google/double-conversion
// which is licensed as follows:
// Copyright 2006-2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef TAO_JSON_EXTERNAL_DOUBLE_HPP
#define TAO_JSON_EXTERNAL_DOUBLE_HPP
// clang-format off
#include <limits.h>
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdlib>
#include <cstring>
// Double operations detection based on target architecture.
// Linux uses a 80bit wide floating point stack on x86. This induces double
// rounding, which in turn leads to wrong results.
// An easy way to test if the floating-point operations are correct is to
// evaluate: 89255.0/1e22. If the floating-point stack is 64 bits wide then
// the result is equal to 89255e-22.
// The best way to test this, is to create a division-function and to compare
// the output of the division with the expected result. (Inlining must be
// disabled.)
// On Linux,x86 89255e-22 != Div_double(89255.0/1e22)
#if defined(_M_X64) || defined(__x86_64__) || \
defined(__ARMEL__) || defined(__avr32__) || defined(_M_ARM) || defined(_M_ARM64) || \
defined(__hppa__) || defined(__ia64__) || \
defined(__mips__) || \
defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__) || \
defined(_POWER) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || \
defined(__sparc__) || defined(__sparc) || defined(__s390__) || \
defined(__SH4__) || defined(__alpha__) || \
defined(_MIPS_ARCH_MIPS32R2) || \
defined(__AARCH64EL__) || defined(__aarch64__)
#define TAO_JSON_DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
#elif defined(__mc68000__)
#undef TAO_JSON_DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS
#elif defined(_M_IX86) || defined(__i386__) || defined(__i386)
#if defined(_WIN32)
// Windows uses a 64bit wide floating point stack.
#define TAO_JSON_DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
#else
#undef TAO_JSON_DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS
#endif // _WIN32
#else
#error Target architecture was not detected as supported by Double-Conversion.
#endif
#if defined(__GNUC__)
#define TAO_JSON_DOUBLE_CONVERSION_UNUSED __attribute__((unused))
#else
#define TAO_JSON_DOUBLE_CONVERSION_UNUSED
#endif
#if defined(_WIN32) && !defined(__MINGW32__)
typedef signed char int8_t;
typedef unsigned char uint8_t;
typedef short int16_t;
typedef unsigned short uint16_t;
typedef int int32_t;
typedef unsigned int uint32_t;
typedef __int64 int64_t;
typedef unsigned __int64 uint64_t;
// intptr_t and friends are defined in crtdefs.h through stdio.h.
#else
#include <stdint.h>
#endif
typedef uint16_t uc16;
#define TAO_JSON_UINT64_2PART_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u))
#ifndef TAO_JSON_GDCV8_ARRAY_SIZE
#define TAO_JSON_GDCV8_ARRAY_SIZE(a) \
((sizeof(a) / sizeof(*(a))) / \
static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
#endif
namespace tao::json::double_conversion
{
static const int kCharSize = sizeof( char );
template <typename T>
class Vector {
public:
Vector() : start_(nullptr), length_(0) {}
Vector(T* data, int len) : start_(data), length_(len) {
assert(len == 0 || (len > 0 && data != nullptr));
}
int length() const { return length_; }
T& operator[](int index) const {
assert(0 <= index && index < length_);
return start_[index];
}
private:
T* start_;
int length_;
};
template <class Dest, class Source>
inline Dest BitCast(const Source& source) {
TAO_JSON_DOUBLE_CONVERSION_UNUSED
typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1];
Dest dest;
std::memmove(&dest, &source, sizeof(dest));
return dest;
}
template <class Dest, class Source>
inline Dest BitCast(Source* source) {
return BitCast<Dest>(reinterpret_cast<uintptr_t>(source));
}
class Bignum
{
public:
static const int kMaxSignificantBits = 3584;
Bignum();
void AssignUInt16(uint16_t value);
void AssignUInt64(uint64_t value);
void AssignDecimalString(Vector<const char> value);
void AssignPowerUInt16(uint16_t base, int exponent);
void AddUInt64(uint64_t operand);
void AddBignum(const Bignum& other);
void SubtractBignum(const Bignum& other);
void Square();
void ShiftLeft(int shift_amount);
void MultiplyByUInt32(uint32_t factor);
void MultiplyByUInt64(uint64_t factor);
void MultiplyByPowerOfTen(int exponent);
static int Compare(const Bignum& a, const Bignum& b);
static bool LessEqual(const Bignum& a, const Bignum& b) {
return Compare(a, b) <= 0;
}
private:
typedef uint32_t Chunk;
typedef uint64_t DoubleChunk;
static const int kChunkSize = sizeof(Chunk) * 8;
static const int kDoubleChunkSize = sizeof(DoubleChunk) * 8;
static const int kBigitSize = 28;
static const Chunk kBigitMask = (1 << kBigitSize) - 1;
static const int kBigitCapacity = kMaxSignificantBits / kBigitSize;
void EnsureCapacity(int size) {
assert(size <= kBigitCapacity);
(void)size;
}
void Align(const Bignum& other);
void Clamp();
bool IsClamped() const;
void Zero();
void BigitsShiftLeft(int shift_amount);
int BigitLength() const { return used_digits_ + exponent_; }
Chunk BigitAt(int index) const;
void SubtractTimes(const Bignum& other, int factor);
Chunk bigits_buffer_[kBigitCapacity];
Vector<Chunk> bigits_;
int used_digits_;
int exponent_;
Bignum( const Bignum & ) = delete;
void operator= ( const Bignum & ) = delete;
};
inline Bignum::Bignum()
: bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
for (int i = 0; i < kBigitCapacity; ++i) {
bigits_[i] = 0;
}
}
template<typename S>
inline int BitSize(S value) {
(void) value; // Mark variable as used.
return 8 * sizeof(value);
}
inline void Bignum::AssignUInt16(uint16_t value) {
assert(kBigitSize >= BitSize(value));
Zero();
if (value == 0) return;
EnsureCapacity(1);
bigits_[0] = value;
used_digits_ = 1;
}
inline void Bignum::AssignUInt64(uint64_t value) {
const int kUInt64Size = 64;
Zero();
if (value == 0) return;
int needed_bigits = kUInt64Size / kBigitSize + 1;
EnsureCapacity(needed_bigits);
for (int i = 0; i < needed_bigits; ++i) {
bigits_[i] = value & kBigitMask;
value = value >> kBigitSize;
}
used_digits_ = needed_bigits;
Clamp();
}
inline uint64_t ReadUInt64(Vector<const char> buffer,
int from,
int digits_to_read) {
uint64_t result = 0;
for (int i = from; i < from + digits_to_read; ++i) {
int digit = buffer[i] - '0';
assert(0 <= digit && digit <= 9);
result = result * 10 + digit;
}
return result;
}
inline void Bignum::AssignDecimalString(Vector<const char> value) {
const int kMaxUint64DecimalDigits = 19;
Zero();
int length = value.length();
unsigned int pos = 0;
while (length >= kMaxUint64DecimalDigits) {
uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
pos += kMaxUint64DecimalDigits;
length -= kMaxUint64DecimalDigits;
MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
AddUInt64(digits);
}
uint64_t digits = ReadUInt64(value, pos, length);
MultiplyByPowerOfTen(length);
AddUInt64(digits);
Clamp();
}
inline void Bignum::AddUInt64(uint64_t operand) {
if (operand == 0) return;
Bignum other;
other.AssignUInt64(operand);
AddBignum(other);
}
inline void Bignum::AddBignum(const Bignum& other) {
assert(IsClamped());
assert(other.IsClamped());
Align(other);
EnsureCapacity(1 + (std::max)(BigitLength(), other.BigitLength()) - exponent_);
Chunk carry = 0;
int bigit_pos = other.exponent_ - exponent_;
assert(bigit_pos >= 0);
for (int i = 0; i < other.used_digits_; ++i) {
Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
bigits_[bigit_pos] = sum & kBigitMask;
carry = sum >> kBigitSize;
bigit_pos++;
}
while (carry != 0) {
Chunk sum = bigits_[bigit_pos] + carry;
bigits_[bigit_pos] = sum & kBigitMask;
carry = sum >> kBigitSize;
bigit_pos++;
}
used_digits_ = (std::max)(bigit_pos, used_digits_);
assert(IsClamped());
}
inline void Bignum::SubtractBignum(const Bignum& other) {
assert(IsClamped());
assert(other.IsClamped());
assert(LessEqual(other, *this));
Align(other);
int offset = other.exponent_ - exponent_;
Chunk borrow = 0;
int i;
for (i = 0; i < other.used_digits_; ++i) {
assert((borrow == 0) || (borrow == 1));
Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
bigits_[i + offset] = difference & kBigitMask;
borrow = difference >> (kChunkSize - 1);
}
while (borrow != 0) {
Chunk difference = bigits_[i + offset] - borrow;
bigits_[i + offset] = difference & kBigitMask;
borrow = difference >> (kChunkSize - 1);
++i;
}
Clamp();
}
inline void Bignum::ShiftLeft(int shift_amount) {
if (used_digits_ == 0) return;
exponent_ += shift_amount / kBigitSize;
int local_shift = shift_amount % kBigitSize;
EnsureCapacity(used_digits_ + 1);
BigitsShiftLeft(local_shift);
}
inline void Bignum::MultiplyByUInt32(uint32_t factor) {
if (factor == 1) return;
if (factor == 0) {
Zero();
return;
}
if (used_digits_ == 0) return;
assert(kDoubleChunkSize >= kBigitSize + 32 + 1);
DoubleChunk carry = 0;
for (int i = 0; i < used_digits_; ++i) {
DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
bigits_[i] = static_cast<Chunk>(product & kBigitMask);
carry = (product >> kBigitSize);
}
while (carry != 0) {
EnsureCapacity(used_digits_ + 1);
bigits_[used_digits_] = carry & kBigitMask;
used_digits_++;
carry >>= kBigitSize;
}
}
inline void Bignum::MultiplyByUInt64(uint64_t factor) {
if (factor == 1) return;
if (factor == 0) {
Zero();
return;
}
assert(kBigitSize < 32);
uint64_t carry = 0;
uint64_t low = factor & 0xFFFFFFFF;
uint64_t high = factor >> 32;
for (int i = 0; i < used_digits_; ++i) {
uint64_t product_low = low * bigits_[i];
uint64_t product_high = high * bigits_[i];
uint64_t tmp = (carry & kBigitMask) + product_low;
bigits_[i] = tmp & kBigitMask;
carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
(product_high << (32 - kBigitSize));
}
while (carry != 0) {
EnsureCapacity(used_digits_ + 1);
bigits_[used_digits_] = carry & kBigitMask;
used_digits_++;
carry >>= kBigitSize;
}
}
inline void Bignum::MultiplyByPowerOfTen(int exponent) {
const uint64_t kFive27 = TAO_JSON_UINT64_2PART_C(0x6765c793, fa10079d);
const uint16_t kFive1 = 5;
const uint16_t kFive2 = kFive1 * 5;
const uint16_t kFive3 = kFive2 * 5;
const uint16_t kFive4 = kFive3 * 5;
const uint16_t kFive5 = kFive4 * 5;
const uint16_t kFive6 = kFive5 * 5;
const uint32_t kFive7 = kFive6 * 5;
const uint32_t kFive8 = kFive7 * 5;
const uint32_t kFive9 = kFive8 * 5;
const uint32_t kFive10 = kFive9 * 5;
const uint32_t kFive11 = kFive10 * 5;
const uint32_t kFive12 = kFive11 * 5;
const uint32_t kFive13 = kFive12 * 5;
const uint32_t kFive1_to_12[] =
{ kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
assert(exponent >= 0);
if (exponent == 0) return;
if (used_digits_ == 0) return;
int remaining_exponent = exponent;
while (remaining_exponent >= 27) {
MultiplyByUInt64(kFive27);
remaining_exponent -= 27;
}
while (remaining_exponent >= 13) {
MultiplyByUInt32(kFive13);
remaining_exponent -= 13;
}
if (remaining_exponent > 0) {
MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
}
ShiftLeft(exponent);
}
inline void Bignum::Square() {
assert(IsClamped());
int product_length = 2 * used_digits_;
EnsureCapacity(product_length);
if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
std::abort(); // Unimplemented.
}
DoubleChunk accumulator = 0;
int copy_offset = used_digits_;
for (int i = 0; i < used_digits_; ++i) {
bigits_[copy_offset + i] = bigits_[i];
}
for (int i = 0; i < used_digits_; ++i) {
int bigit_index1 = i;
int bigit_index2 = 0;
while (bigit_index1 >= 0) {
Chunk chunk1 = bigits_[copy_offset + bigit_index1];
Chunk chunk2 = bigits_[copy_offset + bigit_index2];
accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
bigit_index1--;
bigit_index2++;
}
bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
accumulator >>= kBigitSize;
}
for (int i = used_digits_; i < product_length; ++i) {
int bigit_index1 = used_digits_ - 1;
int bigit_index2 = i - bigit_index1;
while (bigit_index2 < used_digits_) {
Chunk chunk1 = bigits_[copy_offset + bigit_index1];
Chunk chunk2 = bigits_[copy_offset + bigit_index2];
accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
bigit_index1--;
bigit_index2++;
}
bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
accumulator >>= kBigitSize;
}
assert(accumulator == 0);
used_digits_ = product_length;
exponent_ *= 2;
Clamp();
}
inline void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
assert(base != 0);
assert(power_exponent >= 0);
if (power_exponent == 0) {
AssignUInt16(1);
return;
}
Zero();
int shifts = 0;
while ((base & 1) == 0) {
base >>= 1;
shifts++;
}
int bit_size = 0;
int tmp_base = base;
while (tmp_base != 0) {
tmp_base >>= 1;
bit_size++;
}
int final_size = bit_size * power_exponent;
EnsureCapacity(final_size / kBigitSize + 2);
int mask = 1;
while (power_exponent >= mask) mask <<= 1;
mask >>= 2;
uint64_t this_value = base;
bool delayed_multipliciation = false;
const uint64_t max_32bits = 0xFFFFFFFF;
while (mask != 0 && this_value <= max_32bits) {
this_value = this_value * this_value;
if ((power_exponent & mask) != 0) {
uint64_t base_bits_mask =
~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
bool high_bits_zero = (this_value & base_bits_mask) == 0;
if (high_bits_zero) {
this_value *= base;
} else {
delayed_multipliciation = true;
}
}
mask >>= 1;
}
AssignUInt64(this_value);
if (delayed_multipliciation) {
MultiplyByUInt32(base);
}
while (mask != 0) {
Square();
if ((power_exponent & mask) != 0) {
MultiplyByUInt32(base);
}
mask >>= 1;
}
ShiftLeft(shifts * power_exponent);
}
inline Bignum::Chunk Bignum::BigitAt(int index) const {
if (index >= BigitLength()) return 0;
if (index < exponent_) return 0;
return bigits_[index - exponent_];
}
inline int Bignum::Compare(const Bignum& a, const Bignum& b) {
assert(a.IsClamped());
assert(b.IsClamped());
int bigit_length_a = a.BigitLength();
int bigit_length_b = b.BigitLength();
if (bigit_length_a < bigit_length_b) return -1;
if (bigit_length_a > bigit_length_b) return +1;
for (int i = bigit_length_a - 1; i >= (std::min)(a.exponent_, b.exponent_); --i) {
const Chunk bigit_a = a.BigitAt(i);
const Chunk bigit_b = b.BigitAt(i);
if (bigit_a < bigit_b) return -1;
if (bigit_a > bigit_b) return +1;
}
return 0;
}
inline void Bignum::Clamp() {
while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
used_digits_--;
}
if (used_digits_ == 0) {
exponent_ = 0;
}
}
inline bool Bignum::IsClamped() const {
return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
}
inline void Bignum::Zero() {
for (int i = 0; i < used_digits_; ++i) {
bigits_[i] = 0;
}
used_digits_ = 0;
exponent_ = 0;
}
inline void Bignum::Align(const Bignum& other) {
if (exponent_ > other.exponent_) {
int zero_digits = exponent_ - other.exponent_;
EnsureCapacity(used_digits_ + zero_digits);
for (int i = used_digits_ - 1; i >= 0; --i) {
bigits_[i + zero_digits] = bigits_[i];
}
for (int i = 0; i < zero_digits; ++i) {
bigits_[i] = 0;
}
used_digits_ += zero_digits;
exponent_ -= zero_digits;
assert(used_digits_ >= 0);
assert(exponent_ >= 0);
}
}
inline void Bignum::BigitsShiftLeft(int shift_amount) {
assert(shift_amount < kBigitSize);
assert(shift_amount >= 0);
Chunk carry = 0;
for (int i = 0; i < used_digits_; ++i) {
Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
carry = new_carry;
}
if (carry != 0) {
bigits_[used_digits_] = carry;
used_digits_++;
}
}
inline void Bignum::SubtractTimes(const Bignum& other, int factor) {
assert(exponent_ <= other.exponent_);
if (factor < 3) {
for (int i = 0; i < factor; ++i) {
SubtractBignum(other);
}
return;
}
Chunk borrow = 0;
int exponent_diff = other.exponent_ - exponent_;
for (int i = 0; i < other.used_digits_; ++i) {
DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
DoubleChunk remove = borrow + product;
Chunk difference = bigits_[i + exponent_diff] - (remove & kBigitMask);
bigits_[i + exponent_diff] = difference & kBigitMask;
borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
(remove >> kBigitSize));
}
for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
if (borrow == 0) return;
Chunk difference = bigits_[i] - borrow;
bigits_[i] = difference & kBigitMask;
borrow = difference >> (kChunkSize - 1);
}
Clamp();
}
class DiyFp
{
public:
static const int kSignificandSize = 64;
DiyFp() : f_(0), e_(0) {}
DiyFp(uint64_t significand, int exponent) : f_(significand), e_(exponent) {}
void Subtract(const DiyFp& other) {
assert(e_ == other.e_);
assert(f_ >= other.f_);
f_ -= other.f_;
}
static DiyFp Minus(const DiyFp& a, const DiyFp& b) {
DiyFp result = a;
result.Subtract(b);
return result;
}
void Multiply(const DiyFp& other)
{
const uint64_t kM32 = 0xFFFFFFFFU;
uint64_t a = f_ >> 32;
uint64_t b = f_ & kM32;
uint64_t c = other.f_ >> 32;
uint64_t d = other.f_ & kM32;
uint64_t ac = a * c;
uint64_t bc = b * c;
uint64_t ad = a * d;
uint64_t bd = b * d;
uint64_t tmp = (bd >> 32) + (ad & kM32) + (bc & kM32);
tmp += 1U << 31;
uint64_t result_f = ac + (ad >> 32) + (bc >> 32) + (tmp >> 32);
e_ += other.e_ + 64;
f_ = result_f;
}
static DiyFp Times(const DiyFp& a, const DiyFp& b)
{
DiyFp result = a;
result.Multiply(b);
return result;
}
void Normalize() {
assert(f_ != 0);
uint64_t significand = f_;
int exponent = e_;
const uint64_t k10MSBits = TAO_JSON_UINT64_2PART_C(0xFFC00000, 00000000);
while ((significand & k10MSBits) == 0) {
significand <<= 10;
exponent -= 10;
}
while ((significand & kUint64MSB) == 0) {
significand <<= 1;
exponent--;
}
f_ = significand;
e_ = exponent;
}
static DiyFp Normalize(const DiyFp& a) {
DiyFp result = a;
result.Normalize();
return result;
}
uint64_t f() const { return f_; }
int e() const { return e_; }
void set_f(uint64_t new_value) { f_ = new_value; }
void set_e(int new_value) { e_ = new_value; }
private:
static const uint64_t kUint64MSB = TAO_JSON_UINT64_2PART_C(0x80000000, 00000000);
uint64_t f_;
int e_;
};
static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); }
static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); }
class Double {
public:
static const uint64_t kSignMask = TAO_JSON_UINT64_2PART_C(0x80000000, 00000000);
static const uint64_t kExponentMask = TAO_JSON_UINT64_2PART_C(0x7FF00000, 00000000);
static const uint64_t kSignificandMask = TAO_JSON_UINT64_2PART_C(0x000FFFFF, FFFFFFFF);
static const uint64_t kHiddenBit = TAO_JSON_UINT64_2PART_C(0x00100000, 00000000);
static const int kPhysicalSignificandSize = 52;
static const int kSignificandSize = 53;
Double() : d64_(0) {}
explicit Double(double d) : d64_(double_to_uint64(d)) {}
explicit Double(uint64_t d64) : d64_(d64) {}
explicit Double(DiyFp diy_fp)
: d64_(DiyFpToUint64(diy_fp)) {}
DiyFp AsDiyFp() const {
assert(Sign() > 0);
assert(!IsSpecial());
return DiyFp(Significand(), Exponent());
}
DiyFp AsNormalizedDiyFp() const {
assert(value() > 0.0);
uint64_t f = Significand();
int e = Exponent();
while ((f & kHiddenBit) == 0) {
f <<= 1;
e--;
}
f <<= DiyFp::kSignificandSize - kSignificandSize;
e -= DiyFp::kSignificandSize - kSignificandSize;
return DiyFp(f, e);
}
uint64_t AsUint64() const {
return d64_;
}
double NextDouble() const {
if (d64_ == kInfinity) return Double(kInfinity).value();
if (Sign() < 0 && Significand() == 0) {
return 0.0;
}
if (Sign() < 0) {
return Double(d64_ - 1).value();
} else {
return Double(d64_ + 1).value();
}
}
double PreviousDouble() const {
if (d64_ == (kInfinity | kSignMask)) return -Double::Infinity();
if (Sign() < 0) {
return Double(d64_ + 1).value();
} else {
if (Significand() == 0) return -0.0;
return Double(d64_ - 1).value();
}
}
int Exponent() const {
if (IsDenormal()) return kDenormalExponent;
uint64_t d64 = AsUint64();
int biased_e =
static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
return biased_e - kExponentBias;
}
uint64_t Significand() const {
uint64_t d64 = AsUint64();
uint64_t significand = d64 & kSignificandMask;
if (!IsDenormal()) {
return significand + kHiddenBit;
} else {
return significand;
}
}
bool IsDenormal() const {
uint64_t d64 = AsUint64();
return (d64 & kExponentMask) == 0;
}
bool IsSpecial() const {
uint64_t d64 = AsUint64();
return (d64 & kExponentMask) == kExponentMask;
}
bool IsNan() const {
uint64_t d64 = AsUint64();
return ((d64 & kExponentMask) == kExponentMask) &&
((d64 & kSignificandMask) != 0);
}
bool IsInfinite() const {
uint64_t d64 = AsUint64();
return ((d64 & kExponentMask) == kExponentMask) &&
((d64 & kSignificandMask) == 0);
}
int Sign() const {
uint64_t d64 = AsUint64();
return (d64 & kSignMask) == 0? 1: -1;
}
DiyFp UpperBoundary() const {
assert(Sign() > 0);
return DiyFp(Significand() * 2 + 1, Exponent() - 1);
}
void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
assert(value() > 0.0);
DiyFp v = this->AsDiyFp();
DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
DiyFp m_minus;
if (LowerBoundaryIsCloser()) {
m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
} else {
m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
}
m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
m_minus.set_e(m_plus.e());
*out_m_plus = m_plus;
*out_m_minus = m_minus;
}
bool LowerBoundaryIsCloser() const {
bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0);
return physical_significand_is_zero && (Exponent() != kDenormalExponent);
}
double value() const { return uint64_to_double(d64_); }
static int SignificandSizeForOrderOfMagnitude(int order) {
if (order >= (kDenormalExponent + kSignificandSize)) {
return kSignificandSize;
}
if (order <= kDenormalExponent) return 0;
return order - kDenormalExponent;
}
static double Infinity() {
return Double(kInfinity).value();
}
static double NaN() {
return Double(kNaN).value();
}
private:
static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
static const int kDenormalExponent = -kExponentBias + 1;
static const int kMaxExponent = 0x7FF - kExponentBias;
static const uint64_t kInfinity = TAO_JSON_UINT64_2PART_C(0x7FF00000, 00000000);
static const uint64_t kNaN = TAO_JSON_UINT64_2PART_C(0x7FF80000, 00000000);
const uint64_t d64_;
static uint64_t DiyFpToUint64(DiyFp diy_fp) {
uint64_t significand = diy_fp.f();
int exponent = diy_fp.e();
while (significand > kHiddenBit + kSignificandMask) {
significand >>= 1;
exponent++;
}
if (exponent >= kMaxExponent) {
return kInfinity;
}
if (exponent < kDenormalExponent) {
return 0;
}
while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
significand <<= 1;
exponent--;
}
uint64_t biased_exponent;
if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
biased_exponent = 0;
} else {
biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
}
return (significand & kSignificandMask) |
(biased_exponent << kPhysicalSignificandSize);
}
Double( const Double& ) = delete;
void operator=( const Double& ) = delete;
};
struct PowersOfTenCache
{
static const int kDecimalExponentDistance = 8;
static const int kMinDecimalExponent = -348;
static const int kMaxDecimalExponent = 340;
static void GetCachedPowerForDecimalExponent(int requested_exponent,
DiyFp* power,
int* found_exponent);
};
struct CachedPower {
uint64_t significand;
int16_t binary_exponent;
int16_t decimal_exponent;
};
static const CachedPower kCachedPowers[] = {
{TAO_JSON_UINT64_2PART_C(0xfa8fd5a0, 081c0288), -1220, -348},
{TAO_JSON_UINT64_2PART_C(0xbaaee17f, a23ebf76), -1193, -340},
{TAO_JSON_UINT64_2PART_C(0x8b16fb20, 3055ac76), -1166, -332},
{TAO_JSON_UINT64_2PART_C(0xcf42894a, 5dce35ea), -1140, -324},
{TAO_JSON_UINT64_2PART_C(0x9a6bb0aa, 55653b2d), -1113, -316},
{TAO_JSON_UINT64_2PART_C(0xe61acf03, 3d1a45df), -1087, -308},
{TAO_JSON_UINT64_2PART_C(0xab70fe17, c79ac6ca), -1060, -300},
{TAO_JSON_UINT64_2PART_C(0xff77b1fc, bebcdc4f), -1034, -292},
{TAO_JSON_UINT64_2PART_C(0xbe5691ef, 416bd60c), -1007, -284},
{TAO_JSON_UINT64_2PART_C(0x8dd01fad, 907ffc3c), -980, -276},
{TAO_JSON_UINT64_2PART_C(0xd3515c28, 31559a83), -954, -268},
{TAO_JSON_UINT64_2PART_C(0x9d71ac8f, ada6c9b5), -927, -260},
{TAO_JSON_UINT64_2PART_C(0xea9c2277, 23ee8bcb), -901, -252},
{TAO_JSON_UINT64_2PART_C(0xaecc4991, 4078536d), -874, -244},
{TAO_JSON_UINT64_2PART_C(0x823c1279, 5db6ce57), -847, -236},
{TAO_JSON_UINT64_2PART_C(0xc2109436, 4dfb5637), -821, -228},
{TAO_JSON_UINT64_2PART_C(0x9096ea6f, 3848984f), -794, -220},
{TAO_JSON_UINT64_2PART_C(0xd77485cb, 25823ac7), -768, -212},
{TAO_JSON_UINT64_2PART_C(0xa086cfcd, 97bf97f4), -741, -204},
{TAO_JSON_UINT64_2PART_C(0xef340a98, 172aace5), -715, -196},
{TAO_JSON_UINT64_2PART_C(0xb23867fb, 2a35b28e), -688, -188},
{TAO_JSON_UINT64_2PART_C(0x84c8d4df, d2c63f3b), -661, -180},
{TAO_JSON_UINT64_2PART_C(0xc5dd4427, 1ad3cdba), -635, -172},
{TAO_JSON_UINT64_2PART_C(0x936b9fce, bb25c996), -608, -164},
{TAO_JSON_UINT64_2PART_C(0xdbac6c24, 7d62a584), -582, -156},
{TAO_JSON_UINT64_2PART_C(0xa3ab6658, 0d5fdaf6), -555, -148},
{TAO_JSON_UINT64_2PART_C(0xf3e2f893, dec3f126), -529, -140},
{TAO_JSON_UINT64_2PART_C(0xb5b5ada8, aaff80b8), -502, -132},
{TAO_JSON_UINT64_2PART_C(0x87625f05, 6c7c4a8b), -475, -124},
{TAO_JSON_UINT64_2PART_C(0xc9bcff60, 34c13053), -449, -116},
{TAO_JSON_UINT64_2PART_C(0x964e858c, 91ba2655), -422, -108},
{TAO_JSON_UINT64_2PART_C(0xdff97724, 70297ebd), -396, -100},
{TAO_JSON_UINT64_2PART_C(0xa6dfbd9f, b8e5b88f), -369, -92},
{TAO_JSON_UINT64_2PART_C(0xf8a95fcf, 88747d94), -343, -84},
{TAO_JSON_UINT64_2PART_C(0xb9447093, 8fa89bcf), -316, -76},
{TAO_JSON_UINT64_2PART_C(0x8a08f0f8, bf0f156b), -289, -68},
{TAO_JSON_UINT64_2PART_C(0xcdb02555, 653131b6), -263, -60},
{TAO_JSON_UINT64_2PART_C(0x993fe2c6, d07b7fac), -236, -52},
{TAO_JSON_UINT64_2PART_C(0xe45c10c4, 2a2b3b06), -210, -44},
{TAO_JSON_UINT64_2PART_C(0xaa242499, 697392d3), -183, -36},
{TAO_JSON_UINT64_2PART_C(0xfd87b5f2, 8300ca0e), -157, -28},
{TAO_JSON_UINT64_2PART_C(0xbce50864, 92111aeb), -130, -20},
{TAO_JSON_UINT64_2PART_C(0x8cbccc09, 6f5088cc), -103, -12},
{TAO_JSON_UINT64_2PART_C(0xd1b71758, e219652c), -77, -4},
{TAO_JSON_UINT64_2PART_C(0x9c400000, 00000000), -50, 4},
{TAO_JSON_UINT64_2PART_C(0xe8d4a510, 00000000), -24, 12},
{TAO_JSON_UINT64_2PART_C(0xad78ebc5, ac620000), 3, 20},
{TAO_JSON_UINT64_2PART_C(0x813f3978, f8940984), 30, 28},
{TAO_JSON_UINT64_2PART_C(0xc097ce7b, c90715b3), 56, 36},
{TAO_JSON_UINT64_2PART_C(0x8f7e32ce, 7bea5c70), 83, 44},
{TAO_JSON_UINT64_2PART_C(0xd5d238a4, abe98068), 109, 52},
{TAO_JSON_UINT64_2PART_C(0x9f4f2726, 179a2245), 136, 60},
{TAO_JSON_UINT64_2PART_C(0xed63a231, d4c4fb27), 162, 68},
{TAO_JSON_UINT64_2PART_C(0xb0de6538, 8cc8ada8), 189, 76},
{TAO_JSON_UINT64_2PART_C(0x83c7088e, 1aab65db), 216, 84},
{TAO_JSON_UINT64_2PART_C(0xc45d1df9, 42711d9a), 242, 92},
{TAO_JSON_UINT64_2PART_C(0x924d692c, a61be758), 269, 100},
{TAO_JSON_UINT64_2PART_C(0xda01ee64, 1a708dea), 295, 108},
{TAO_JSON_UINT64_2PART_C(0xa26da399, 9aef774a), 322, 116},
{TAO_JSON_UINT64_2PART_C(0xf209787b, b47d6b85), 348, 124},
{TAO_JSON_UINT64_2PART_C(0xb454e4a1, 79dd1877), 375, 132},
{TAO_JSON_UINT64_2PART_C(0x865b8692, 5b9bc5c2), 402, 140},
{TAO_JSON_UINT64_2PART_C(0xc83553c5, c8965d3d), 428, 148},
{TAO_JSON_UINT64_2PART_C(0x952ab45c, fa97a0b3), 455, 156},
{TAO_JSON_UINT64_2PART_C(0xde469fbd, 99a05fe3), 481, 164},
{TAO_JSON_UINT64_2PART_C(0xa59bc234, db398c25), 508, 172},
{TAO_JSON_UINT64_2PART_C(0xf6c69a72, a3989f5c), 534, 180},
{TAO_JSON_UINT64_2PART_C(0xb7dcbf53, 54e9bece), 561, 188},
{TAO_JSON_UINT64_2PART_C(0x88fcf317, f22241e2), 588, 196},
{TAO_JSON_UINT64_2PART_C(0xcc20ce9b, d35c78a5), 614, 204},
{TAO_JSON_UINT64_2PART_C(0x98165af3, 7b2153df), 641, 212},
{TAO_JSON_UINT64_2PART_C(0xe2a0b5dc, 971f303a), 667, 220},
{TAO_JSON_UINT64_2PART_C(0xa8d9d153, 5ce3b396), 694, 228},
{TAO_JSON_UINT64_2PART_C(0xfb9b7cd9, a4a7443c), 720, 236},
{TAO_JSON_UINT64_2PART_C(0xbb764c4c, a7a44410), 747, 244},
{TAO_JSON_UINT64_2PART_C(0x8bab8eef, b6409c1a), 774, 252},
{TAO_JSON_UINT64_2PART_C(0xd01fef10, a657842c), 800, 260},
{TAO_JSON_UINT64_2PART_C(0x9b10a4e5, e9913129), 827, 268},
{TAO_JSON_UINT64_2PART_C(0xe7109bfb, a19c0c9d), 853, 276},
{TAO_JSON_UINT64_2PART_C(0xac2820d9, 623bf429), 880, 284},
{TAO_JSON_UINT64_2PART_C(0x80444b5e, 7aa7cf85), 907, 292},
{TAO_JSON_UINT64_2PART_C(0xbf21e440, 03acdd2d), 933, 300},
{TAO_JSON_UINT64_2PART_C(0x8e679c2f, 5e44ff8f), 960, 308},
{TAO_JSON_UINT64_2PART_C(0xd433179d, 9c8cb841), 986, 316},
{TAO_JSON_UINT64_2PART_C(0x9e19db92, b4e31ba9), 1013, 324},
{TAO_JSON_UINT64_2PART_C(0xeb96bf6e, badf77d9), 1039, 332},
{TAO_JSON_UINT64_2PART_C(0xaf87023b, 9bf0ee6b), 1066, 340},
};
static const int kCachedPowersLength = TAO_JSON_GDCV8_ARRAY_SIZE(kCachedPowers);
static const int kCachedPowersOffset = 348;
static const double kD_1_LOG2_10 = 0.30102999566398114;
inline void PowersOfTenCache::GetCachedPowerForDecimalExponent(int requested_exponent,
DiyFp* power,
int* found_exponent) {
assert(kMinDecimalExponent <= requested_exponent);
assert(requested_exponent < kMaxDecimalExponent + kDecimalExponentDistance);
int index =
(requested_exponent + kCachedPowersOffset) / kDecimalExponentDistance;
CachedPower cached_power = kCachedPowers[index];
*power = DiyFp(cached_power.significand, cached_power.binary_exponent);
*found_exponent = cached_power.decimal_exponent;
assert(*found_exponent <= requested_exponent);
assert(requested_exponent < *found_exponent + kDecimalExponentDistance);
}
static const int kMaxExactDoubleIntegerDecimalDigits = 15;
static const int kMaxUint64DecimalDigits = 19;
static const int kMaxDecimalPower = 309;
static const int kMinDecimalPower = -324;
static const uint64_t kMaxUint64 = TAO_JSON_UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF);
static const double exact_powers_of_ten[] = {
1.0, // 10^0
10.0,
100.0,
1000.0,
10000.0,
100000.0,
1000000.0,
10000000.0,
100000000.0,
1000000000.0,
10000000000.0, // 10^10
100000000000.0,
1000000000000.0,
10000000000000.0,
100000000000000.0,
1000000000000000.0,
10000000000000000.0,
100000000000000000.0,
1000000000000000000.0,
10000000000000000000.0,
100000000000000000000.0, // 10^20
1000000000000000000000.0,
10000000000000000000000.0
};
static const int kExactPowersOfTenSize = TAO_JSON_GDCV8_ARRAY_SIZE(exact_powers_of_ten);
static const int kMaxSignificantDecimalDigits = 780;
inline uint64_t ReadUint64(Vector<const char> buffer,
int* number_of_read_digits) {
uint64_t result = 0;
int i = 0;
while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
int digit = buffer[i++] - '0';
assert(0 <= digit && digit <= 9);
result = 10 * result + digit;
}
*number_of_read_digits = i;
return result;
}
inline void ReadDiyFp(Vector<const char> buffer,
DiyFp* result,
int* remaining_decimals) {
int read_digits;
uint64_t significand = ReadUint64(buffer, &read_digits);
if (buffer.length() == read_digits) {
*result = DiyFp(significand, 0);
*remaining_decimals = 0;
} else {
if (buffer[read_digits] >= '5') {
significand++;
}
int exponent = 0;
*result = DiyFp(significand, exponent);
*remaining_decimals = buffer.length() - read_digits;
}
}
inline bool DoubleStrtod(Vector<const char> trimmed,
int exponent,
double* result) {
#if !defined(TAO_JSON_DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
// On x86 the floating-point stack can be 64 or 80 bits wide. If it is
// 80 bits wide (as is the case on Linux) then double-rounding occurs and the
// result is not accurate.
// We know that Windows32 uses 64 bits and is therefore accurate.
// Note that the ARM simulator is compiled for 32bits. It therefore exhibits
// the same problem.
return false;
#endif
if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
int read_digits;
if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
*result = static_cast<double>(ReadUint64(trimmed, &read_digits));
assert(read_digits == trimmed.length());
*result /= exact_powers_of_ten[-exponent];
return true;
}
if (0 <= exponent && exponent < kExactPowersOfTenSize) {
*result = static_cast<double>(ReadUint64(trimmed, &read_digits));
assert(read_digits == trimmed.length());
*result *= exact_powers_of_ten[exponent];
return true;
}
int remaining_digits =
kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
if ((0 <= exponent) &&
(exponent - remaining_digits < kExactPowersOfTenSize)) {
*result = static_cast<double>(ReadUint64(trimmed, &read_digits));
assert(read_digits == trimmed.length());
*result *= exact_powers_of_ten[remaining_digits];
*result *= exact_powers_of_ten[exponent - remaining_digits];
return true;
}
}
return false;
}
inline DiyFp AdjustmentPowerOfTen(int exponent) {
assert(0 < exponent);
assert(exponent < PowersOfTenCache::kDecimalExponentDistance);
assert(PowersOfTenCache::kDecimalExponentDistance == 8);
switch (exponent) {
case 1: return DiyFp(TAO_JSON_UINT64_2PART_C(0xa0000000, 00000000), -60);
case 2: return DiyFp(TAO_JSON_UINT64_2PART_C(0xc8000000, 00000000), -57);
case 3: return DiyFp(TAO_JSON_UINT64_2PART_C(0xfa000000, 00000000), -54);
case 4: return DiyFp(TAO_JSON_UINT64_2PART_C(0x9c400000, 00000000), -50);
case 5: return DiyFp(TAO_JSON_UINT64_2PART_C(0xc3500000, 00000000), -47);
case 6: return DiyFp(TAO_JSON_UINT64_2PART_C(0xf4240000, 00000000), -44);
case 7: return DiyFp(TAO_JSON_UINT64_2PART_C(0x98968000, 00000000), -40);
default:
std::abort();
}
}
inline bool DiyFpStrtod(Vector<const char> buffer,
int exponent,
double* result) {
DiyFp input;
int remaining_decimals;
ReadDiyFp(buffer, &input, &remaining_decimals);
const int kDenominatorLog = 3;
const int kDenominator = 1 << kDenominatorLog;
exponent += remaining_decimals;
uint64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
int old_e = input.e();
input.Normalize();
error <<= old_e - input.e();
assert(exponent <= PowersOfTenCache::kMaxDecimalExponent);
if (exponent < PowersOfTenCache::kMinDecimalExponent) {
*result = 0.0;
return true;
}
DiyFp cached_power;
int cached_decimal_exponent;
PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
&cached_power,
&cached_decimal_exponent);
if (cached_decimal_exponent != exponent) {
int adjustment_exponent = exponent - cached_decimal_exponent;
DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
input.Multiply(adjustment_power);
if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
assert(DiyFp::kSignificandSize == 64);
} else {
error += kDenominator / 2;
}
}
input.Multiply(cached_power);
int error_b = kDenominator / 2;
int error_ab = (error == 0 ? 0 : 1);
int fixed_error = kDenominator / 2;
error += error_b + error_ab + fixed_error;
old_e = input.e();
input.Normalize();
error <<= old_e - input.e();
int order_of_magnitude = DiyFp::kSignificandSize + input.e();
int effective_significand_size =
Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
int precision_digits_count =
DiyFp::kSignificandSize - effective_significand_size;
if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
int shift_amount = (precision_digits_count + kDenominatorLog) -
DiyFp::kSignificandSize + 1;
input.set_f(input.f() >> shift_amount);
input.set_e(input.e() + shift_amount);
error = (error >> shift_amount) + 1 + kDenominator;
precision_digits_count -= shift_amount;
}
assert(DiyFp::kSignificandSize == 64);
assert(precision_digits_count < 64);
uint64_t one64 = 1;
uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
uint64_t precision_bits = input.f() & precision_bits_mask;
uint64_t half_way = one64 << (precision_digits_count - 1);
precision_bits *= kDenominator;
half_way *= kDenominator;
DiyFp rounded_input(input.f() >> precision_digits_count,
input.e() + precision_digits_count);
if (precision_bits >= half_way + error) {
rounded_input.set_f(rounded_input.f() + 1);
}
*result = Double(rounded_input).value();
if (half_way - error < precision_bits && precision_bits < half_way + error) {
return false;
} else {
return true;
}
}
inline int CompareBufferWithDiyFp(Vector<const char> buffer,
int exponent,
DiyFp diy_fp) {
assert(buffer.length() + exponent <= kMaxDecimalPower + 1);
assert(buffer.length() + exponent > kMinDecimalPower);
assert(buffer.length() <= kMaxSignificantDecimalDigits);
assert(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
Bignum buffer_bignum;
Bignum diy_fp_bignum;
buffer_bignum.AssignDecimalString(buffer);
diy_fp_bignum.AssignUInt64(diy_fp.f());
if (exponent >= 0) {
buffer_bignum.MultiplyByPowerOfTen(exponent);
} else {
diy_fp_bignum.MultiplyByPowerOfTen(-exponent);
}
if (diy_fp.e() > 0) {
diy_fp_bignum.ShiftLeft(diy_fp.e());
} else {
buffer_bignum.ShiftLeft(-diy_fp.e());
}
return Bignum::Compare(buffer_bignum, diy_fp_bignum);
}
inline bool ComputeGuess(Vector<const char> trimmed, int exponent,
double* guess) {
if (trimmed.length() == 0) {
*guess = 0.0;
return true;
}
if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) {
*guess = Double::Infinity();
return true;
}
if (exponent + trimmed.length() <= kMinDecimalPower) {
*guess = 0.0;
return true;
}
if (DoubleStrtod(trimmed, exponent, guess) ||
DiyFpStrtod(trimmed, exponent, guess)) {
return true;
}
if (*guess == Double::Infinity()) {
return true;
}
return false;
}
inline double Strtod( Vector< const char > buffer, int exponent )
{
double guess;
if (ComputeGuess(buffer, exponent, &guess)) {
return guess;
}
DiyFp upper_boundary = Double(guess).UpperBoundary();
int comparison = CompareBufferWithDiyFp(buffer, exponent, upper_boundary);
if (comparison < 0) {
return guess;
} else if (comparison > 0) {
return Double(guess).NextDouble();
} else if ((Double(guess).Significand() & 1) == 0) {
return guess;
} else {
return Double(guess).NextDouble();
}
}
} // namespace tao::json::double_conversion
#endif
|