1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
|
/* -*- linux-c -*-
Copyright (C) 2004 Tom Szilagyi
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <math.h>
#include <ladspa.h>
#include "tap_utils.h"
/* ***** VERY IMPORTANT! *****
*
* If you enable this, the plugin will use float arithmetics in DSP
* calculations. This usually yields lower average CPU usage, but
* occasionaly may result in high CPU peaks which cause trouble to you
* and your JACK server. The default is to use fixpoint arithmetics
* (with the following #define commented out). But (depending on the
* processor on which you run the code) you may find floating point
* mode usable.
*/
/*#define DYN_CALC_FLOAT*/
typedef signed int sample;
/* coefficient for float to sample (signed int) conversion */
/* this allows for about 60 dB headroom above 0dB, if 0 dB is equivalent to 1.0f */
/* As 2^31 equals more than 180 dB, about 120 dB dynamics remains below 0 dB */
#define F2S 2147483
#ifdef DYN_CALC_FLOAT
typedef LADSPA_Data dyn_t;
typedef float rms_t;
#else
typedef sample dyn_t;
typedef int64_t rms_t;
#endif
/* The Unique ID of the plugin: */
#define ID_STEREO 2153
/* The port numbers for the plugin: */
#define ATTACK 0
#define RELEASE 1
#define OFFSGAIN 2
#define MUGAIN 3
#define RMSENV_L 4
#define RMSENV_R 5
#define MODGAIN_L 6
#define MODGAIN_R 7
#define STEREO 8
#define MODE 9
#define INPUT_L 10
#define INPUT_R 11
#define OUTPUT_L 12
#define OUTPUT_R 13
/* Total number of ports */
#define PORTCOUNT_STEREO 14
#define TABSIZE 256
#define RMSSIZE 64
typedef struct {
rms_t buffer[RMSSIZE];
unsigned int pos;
rms_t sum;
} rms_env;
/* max. number of breakpoints on in/out dB graph */
#define MAX_POINTS 20
typedef struct {
LADSPA_Data x;
LADSPA_Data y;
} GRAPH_POINT;
typedef struct {
unsigned long num_points;
GRAPH_POINT points[MAX_POINTS];
} DYNAMICS_DATA;
#include "tap_dynamics_presets.h"
/* The structure used to hold port connection information and state */
typedef struct {
LADSPA_Data * attack;
LADSPA_Data * release;
LADSPA_Data * offsgain;
LADSPA_Data * mugain;
LADSPA_Data * rmsenv_L;
LADSPA_Data * rmsenv_R;
LADSPA_Data * modgain_L;
LADSPA_Data * modgain_R;
LADSPA_Data * stereo;
LADSPA_Data * mode;
LADSPA_Data * input_L;
LADSPA_Data * output_L;
LADSPA_Data * input_R;
LADSPA_Data * output_R;
unsigned long sample_rate;
float * as;
unsigned long count;
dyn_t amp_L;
dyn_t amp_R;
dyn_t env_L;
dyn_t env_R;
float gain_L;
float gain_R;
float gain_out_L;
float gain_out_R;
rms_env * rms_L;
rms_env * rms_R;
rms_t sum_L;
rms_t sum_R;
DYNAMICS_DATA graph;
LADSPA_Data run_adding_gain;
} Dynamics;
/* RMS envelope stuff, grabbed without a second thought from Steve Harris's swh-plugins, util/rms.c */
/* Adapted, though, to be able to use fixed-point arithmetics as well. */
rms_env *
rms_env_new(void) {
rms_env * new = (rms_env *)calloc(1, sizeof(rms_env));
return new;
}
void
rms_env_reset(rms_env *r) {
unsigned int i;
for (i = 0; i < RMSSIZE; i++) {
r->buffer[i] = 0.0f;
}
r->pos = 0;
r->sum = 0.0f;
}
inline static
dyn_t
rms_env_process(rms_env *r, const rms_t x) {
r->sum -= r->buffer[r->pos];
r->sum += x;
r->buffer[r->pos] = x;
r->pos = (r->pos + 1) & (RMSSIZE - 1);
#ifdef DYN_CALC_FLOAT
return sqrt(r->sum / (float)RMSSIZE);
#else
return sqrt(r->sum / RMSSIZE);
#endif
}
inline
LADSPA_Data
get_table_gain(int mode, LADSPA_Data level) {
LADSPA_Data x1 = -80.0f;
LADSPA_Data y1 = -80.0f;
LADSPA_Data x2 = 0.0f;
LADSPA_Data y2 = 0.0f;
unsigned int i = 0;
if (level <= -80.0f)
return get_table_gain(mode, -79.9f);
while (i < dyn_data[mode].num_points && dyn_data[mode].points[i].x < level) {
x1 = dyn_data[mode].points[i].x;
y1 = dyn_data[mode].points[i].y;
i++;
}
if (i < dyn_data[mode].num_points) {
x2 = dyn_data[mode].points[i].x;
y2 = dyn_data[mode].points[i].y;
} else
return 0.0f;
return y1 + ((level - x1) * (y2 - y1) / (x2 - x1)) - level;
}
/* Construct a new plugin instance. */
LADSPA_Handle
instantiate_Dynamics(const LADSPA_Descriptor * Descriptor, unsigned long sample_rate) {
LADSPA_Handle * ptr;
float * as = NULL;
unsigned int count = 0;
dyn_t amp_L = 0.0f;
dyn_t amp_R = 0.0f;
dyn_t env_L = 0.0f;
dyn_t env_R = 0.0f;
float gain_L = 0.0f;
float gain_R = 0.0f;
float gain_out_L = 0.0f;
float gain_out_R = 0.0f;
rms_env * rms_L = NULL;
rms_env * rms_R = NULL;
rms_t sum_L = 0.0f;
rms_t sum_R = 0.0f;
int i;
if ((ptr = malloc(sizeof(Dynamics))) == NULL)
return NULL;
((Dynamics *)ptr)->sample_rate = sample_rate;
((Dynamics *)ptr)->run_adding_gain = 1.0;
if ((rms_L = rms_env_new()) == NULL)
return NULL;
if ((rms_R = rms_env_new()) == NULL)
return NULL;
if ((as = malloc(TABSIZE * sizeof(float))) == NULL)
return NULL;
as[0] = 1.0f;
for (i = 1; i < TABSIZE; i++) {
as[i] = expf(-1.0f / (sample_rate * (float)i / (float)TABSIZE));
}
((Dynamics *)ptr)->as = as;
((Dynamics *)ptr)->count = count;
((Dynamics *)ptr)->amp_L = amp_L;
((Dynamics *)ptr)->amp_R = amp_R;
((Dynamics *)ptr)->env_L = env_L;
((Dynamics *)ptr)->env_R = env_R;
((Dynamics *)ptr)->gain_L = gain_L;
((Dynamics *)ptr)->gain_R = gain_R;
((Dynamics *)ptr)->gain_out_L = gain_out_L;
((Dynamics *)ptr)->gain_out_R = gain_out_R;
((Dynamics *)ptr)->rms_L = rms_L;
((Dynamics *)ptr)->rms_R = rms_R;
((Dynamics *)ptr)->sum_L = sum_L;
((Dynamics *)ptr)->sum_R = sum_R;
return ptr;
}
/* Connect a port to a data location. */
void
connect_port_Dynamics(LADSPA_Handle Instance,
unsigned long Port,
LADSPA_Data * DataLocation) {
Dynamics * ptr = (Dynamics *)Instance;
switch (Port) {
case ATTACK:
ptr->attack = DataLocation;
break;
case RELEASE:
ptr->release = DataLocation;
break;
case OFFSGAIN:
ptr->offsgain = DataLocation;
break;
case MUGAIN:
ptr->mugain = DataLocation;
break;
case RMSENV_L:
ptr->rmsenv_L = DataLocation;
*(ptr->rmsenv_L) = -60.0f;
break;
case RMSENV_R:
ptr->rmsenv_R = DataLocation;
*(ptr->rmsenv_R) = -60.0f;
break;
case MODGAIN_L:
ptr->modgain_L = DataLocation;
*(ptr->modgain_L) = 0.0f;
break;
case MODGAIN_R:
ptr->modgain_R = DataLocation;
*(ptr->modgain_R) = 0.0f;
break;
case STEREO:
ptr->stereo = DataLocation;
break;
case MODE:
ptr->mode = DataLocation;
break;
case INPUT_L:
ptr->input_L = DataLocation;
break;
case OUTPUT_L:
ptr->output_L = DataLocation;
break;
case INPUT_R:
ptr->input_R = DataLocation;
break;
case OUTPUT_R:
ptr->output_R = DataLocation;
break;
}
}
void
run_Dynamics(LADSPA_Handle Instance,
unsigned long sample_count) {
Dynamics * ptr = (Dynamics *)Instance;
LADSPA_Data * input_L = ptr->input_L;
LADSPA_Data * output_L = ptr->output_L;
LADSPA_Data * input_R = ptr->input_R;
LADSPA_Data * output_R = ptr->output_R;
const float attack = LIMIT(*(ptr->attack), 4.0f, 500.0f);
const float release = LIMIT(*(ptr->release), 4.0f, 1000.0f);
const float offsgain = LIMIT(*(ptr->offsgain), -20.0f, 20.0f);
const float mugain = db2lin(LIMIT(*(ptr->mugain), -20.0f, 20.0f));
const int stereo = LIMIT(*(ptr->stereo), 0, 2);
const int mode = LIMIT(*(ptr->mode), 0, NUM_MODES-1);
unsigned long sample_index;
dyn_t amp_L = ptr->amp_L;
dyn_t amp_R = ptr->amp_R;
dyn_t env_L = ptr->env_L;
dyn_t env_R = ptr->env_R;
float * as = ptr->as;
unsigned int count = ptr->count;
float gain_L = ptr->gain_L;
float gain_R = ptr->gain_R;
float gain_out_L = ptr->gain_out_L;
float gain_out_R = ptr->gain_out_R;
rms_env * rms_L = ptr->rms_L;
rms_env * rms_R = ptr->rms_R;
rms_t sum_L = ptr->sum_L;
rms_t sum_R = ptr->sum_R;
const float ga = as[(unsigned int)(attack * 0.001f * (LADSPA_Data)(TABSIZE-1))];
const float gr = as[(unsigned int)(release * 0.001f * (LADSPA_Data)(TABSIZE-1))];
const float ef_a = ga * 0.25f;
const float ef_ai = 1.0f - ef_a;
float level_L = 0.0f;
float level_R = 0.0f;
float adjust_L = 0.0f;
float adjust_R = 0.0f;
for (sample_index = 0; sample_index < sample_count; sample_index++) {
#ifdef DYN_CALC_FLOAT
sum_L += input_L[sample_index] * input_L[sample_index];
sum_R += input_R[sample_index] * input_R[sample_index];
if (amp_L > env_L) {
env_L = env_L * ga + amp_L * (1.0f - ga);
} else {
env_L = env_L * gr + amp_L * (1.0f - gr);
}
if (amp_R > env_R) {
env_R = env_R * ga + amp_R * (1.0f - ga);
} else {
env_R = env_R * gr + amp_R * (1.0f - gr);
}
#else
sum_L += (rms_t)(input_L[sample_index] * F2S) * (rms_t)(input_L[sample_index] * F2S);
sum_R += (rms_t)(input_R[sample_index] * F2S) * (rms_t)(input_R[sample_index] * F2S);
if (amp_L) {
if (amp_L > env_L) {
env_L = (double)env_L * ga + (double)amp_L * (1.0f - ga);
} else {
env_L = (double)env_L * gr + (double)amp_L * (1.0f - gr);
}
} else
env_L = 0;
if (amp_R) {
if (amp_R > env_R) {
env_R = (double)env_R * ga + (double)amp_R * (1.0f - ga);
} else {
env_R = (double)env_R * gr + (double)amp_R * (1.0f - gr);
}
} else
env_R = 0;
#endif
if (count++ % 4 == 3) {
#ifdef DYN_CALC_FLOAT
amp_L = rms_env_process(rms_L, sum_L * 0.25f);
amp_R = rms_env_process(rms_R, sum_R * 0.25f);
#else
if (sum_L)
amp_L = rms_env_process(rms_L, sum_L * 0.25f);
else
amp_L = 0;
if (sum_R)
amp_R = rms_env_process(rms_R, sum_R * 0.25f);
else
amp_R = 0;
#endif
#ifdef DYN_CALC_FLOAT
if (isnan(amp_L))
amp_L = 0.0f;
if (isnan(amp_R))
amp_R = 0.0f;
#endif
sum_L = sum_R = 0;
/* set gain_out according to the difference between
the envelope volume level (env) and the corresponding
output level (from graph) */
#ifdef DYN_CALC_FLOAT
level_L = 20 * log10f(2 * env_L);
level_R = 20 * log10f(2 * env_R);
#else
level_L = 20 * log10f(2 * (double)env_L / (double)F2S);
level_R = 20 * log10f(2 * (double)env_R / (double)F2S);
#endif
adjust_L = get_table_gain(mode, level_L + offsgain);
adjust_R = get_table_gain(mode, level_R + offsgain);
/* set gains according to stereo mode */
switch (stereo) {
case 0:
gain_out_L = db2lin(adjust_L);
gain_out_R = db2lin(adjust_R);
break;
case 1:
adjust_L = adjust_R = (adjust_L + adjust_R) / 2.0f;
gain_out_L = gain_out_R = db2lin(adjust_L);
break;
case 2:
adjust_L = adjust_R = (adjust_L > adjust_R) ? adjust_L : adjust_R;
gain_out_L = gain_out_R = db2lin(adjust_L);
break;
}
}
gain_L = gain_L * ef_a + gain_out_L * ef_ai;
gain_R = gain_R * ef_a + gain_out_R * ef_ai;
output_L[sample_index] = input_L[sample_index] * gain_L * mugain;
output_R[sample_index] = input_R[sample_index] * gain_R * mugain;
}
ptr->sum_L = sum_L;
ptr->sum_R = sum_R;
ptr->amp_L = amp_L;
ptr->amp_R = amp_R;
ptr->gain_L = gain_L;
ptr->gain_R = gain_R;
ptr->gain_out_L = gain_out_L;
ptr->gain_out_R = gain_out_R;
ptr->env_L = env_L;
ptr->env_R = env_R;
ptr->count = count;
*(ptr->rmsenv_L) = LIMIT(level_L, -60.0f, 20.0f);
*(ptr->rmsenv_R) = LIMIT(level_R, -60.0f, 20.0f);
*(ptr->modgain_L) = LIMIT(adjust_L, -60.0f, 20.0f);
*(ptr->modgain_R) = LIMIT(adjust_R, -60.0f, 20.0f);
}
void
set_run_adding_gain_Dynamics(LADSPA_Handle Instance, LADSPA_Data gain) {
Dynamics * ptr = (Dynamics *)Instance;
ptr->run_adding_gain = gain;
}
void
run_adding_Dynamics(LADSPA_Handle Instance,
unsigned long sample_count) {
Dynamics * ptr = (Dynamics *)Instance;
LADSPA_Data * input_L = ptr->input_L;
LADSPA_Data * output_L = ptr->output_L;
LADSPA_Data * input_R = ptr->input_R;
LADSPA_Data * output_R = ptr->output_R;
const float attack = LIMIT(*(ptr->attack), 4.0f, 500.0f);
const float release = LIMIT(*(ptr->release), 4.0f, 1000.0f);
const float offsgain = LIMIT(*(ptr->offsgain), -20.0f, 20.0f);
const float mugain = db2lin(LIMIT(*(ptr->mugain), -20.0f, 20.0f));
const int stereo = LIMIT(*(ptr->stereo), 0, 2);
const int mode = LIMIT(*(ptr->mode), 0, NUM_MODES-1);
unsigned long sample_index;
dyn_t amp_L = ptr->amp_L;
dyn_t amp_R = ptr->amp_R;
dyn_t env_L = ptr->env_L;
dyn_t env_R = ptr->env_R;
float * as = ptr->as;
unsigned int count = ptr->count;
float gain_L = ptr->gain_L;
float gain_R = ptr->gain_R;
float gain_out_L = ptr->gain_out_L;
float gain_out_R = ptr->gain_out_R;
rms_env * rms_L = ptr->rms_L;
rms_env * rms_R = ptr->rms_R;
rms_t sum_L = ptr->sum_L;
rms_t sum_R = ptr->sum_R;
const float ga = as[(unsigned int)(attack * 0.001f * (LADSPA_Data)(TABSIZE-1))];
const float gr = as[(unsigned int)(release * 0.001f * (LADSPA_Data)(TABSIZE-1))];
const float ef_a = ga * 0.25f;
const float ef_ai = 1.0f - ef_a;
float level_L = 0.0f;
float level_R = 0.0f;
float adjust_L = 0.0f;
float adjust_R = 0.0f;
for (sample_index = 0; sample_index < sample_count; sample_index++) {
#ifdef DYN_CALC_FLOAT
sum_L += input_L[sample_index] * input_L[sample_index];
sum_R += input_R[sample_index] * input_R[sample_index];
if (amp_L > env_L) {
env_L = env_L * ga + amp_L * (1.0f - ga);
} else {
env_L = env_L * gr + amp_L * (1.0f - gr);
}
if (amp_R > env_R) {
env_R = env_R * ga + amp_R * (1.0f - ga);
} else {
env_R = env_R * gr + amp_R * (1.0f - gr);
}
#else
sum_L += (rms_t)(input_L[sample_index] * F2S) * (rms_t)(input_L[sample_index] * F2S);
sum_R += (rms_t)(input_R[sample_index] * F2S) * (rms_t)(input_R[sample_index] * F2S);
if (amp_L) {
if (amp_L > env_L) {
env_L = (double)env_L * ga + (double)amp_L * (1.0f - ga);
} else {
env_L = (double)env_L * gr + (double)amp_L * (1.0f - gr);
}
} else
env_L = 0;
if (amp_R) {
if (amp_R > env_R) {
env_R = (double)env_R * ga + (double)amp_R * (1.0f - ga);
} else {
env_R = (double)env_R * gr + (double)amp_R * (1.0f - gr);
}
} else
env_R = 0;
#endif
if (count++ % 4 == 3) {
#ifdef DYN_CALC_FLOAT
amp_L = rms_env_process(rms_L, sum_L * 0.25f);
amp_R = rms_env_process(rms_R, sum_R * 0.25f);
#else
if (sum_L)
amp_L = rms_env_process(rms_L, sum_L * 0.25f);
else
amp_L = 0;
if (sum_R)
amp_R = rms_env_process(rms_R, sum_R * 0.25f);
else
amp_R = 0;
#endif
#ifdef DYN_CALC_FLOAT
if (isnan(amp_L))
amp_L = 0.0f;
if (isnan(amp_R))
amp_R = 0.0f;
#endif
sum_L = sum_R = 0;
/* set gain_out according to the difference between
the envelope volume level (env) and the corresponding
output level (from graph) */
#ifdef DYN_CALC_FLOAT
level_L = 20 * log10f(2 * env_L);
level_R = 20 * log10f(2 * env_R);
#else
level_L = 20 * log10f(2 * (double)env_L / (double)F2S);
level_R = 20 * log10f(2 * (double)env_R / (double)F2S);
#endif
adjust_L = get_table_gain(mode, level_L + offsgain);
adjust_R = get_table_gain(mode, level_R + offsgain);
/* set gains according to stereo mode */
switch (stereo) {
case 0:
gain_out_L = db2lin(adjust_L);
gain_out_R = db2lin(adjust_R);
break;
case 1:
adjust_L = adjust_R = (adjust_L + adjust_R) / 2.0f;
gain_out_L = gain_out_R = db2lin(adjust_L);
break;
case 2:
adjust_L = adjust_R = (adjust_L > adjust_R) ? adjust_L : adjust_R;
gain_out_L = gain_out_R = db2lin(adjust_L);
break;
}
}
gain_L = gain_L * ef_a + gain_out_L * ef_ai;
gain_R = gain_R * ef_a + gain_out_R * ef_ai;
output_L[sample_index] += ptr->run_adding_gain * input_L[sample_index] * gain_L * mugain;
output_R[sample_index] += ptr->run_adding_gain * input_R[sample_index] * gain_R * mugain;
}
ptr->sum_L = sum_L;
ptr->sum_R = sum_R;
ptr->amp_L = amp_L;
ptr->amp_R = amp_R;
ptr->gain_L = gain_L;
ptr->gain_R = gain_R;
ptr->gain_out_L = gain_out_L;
ptr->gain_out_R = gain_out_R;
ptr->env_L = env_L;
ptr->env_R = env_R;
ptr->count = count;
*(ptr->rmsenv_L) = LIMIT(level_L, -60.0f, 20.0f);
*(ptr->rmsenv_R) = LIMIT(level_R, -60.0f, 20.0f);
*(ptr->modgain_L) = LIMIT(adjust_L, -60.0f, 20.0f);
*(ptr->modgain_R) = LIMIT(adjust_R, -60.0f, 20.0f);
}
/* Throw away a Dynamics effect instance. */
void
cleanup_Dynamics(LADSPA_Handle Instance) {
Dynamics * ptr = (Dynamics *)Instance;
free(ptr->rms_L);
free(ptr->rms_R);
free(ptr->as);
free(Instance);
}
LADSPA_Descriptor * stereo_descriptor = NULL;
/* __attribute__((constructor)) tap_init() is called automatically when the plugin library is first
loaded. */
void
__attribute__((constructor)) tap_init() {
char ** port_names;
LADSPA_PortDescriptor * port_descriptors;
LADSPA_PortRangeHint * port_range_hints;
if ((stereo_descriptor =
(LADSPA_Descriptor *)malloc(sizeof(LADSPA_Descriptor))) == NULL)
exit(1);
stereo_descriptor->UniqueID = ID_STEREO;
stereo_descriptor->Label = strdup("tap_dynamics_st");
stereo_descriptor->Properties = 0;
stereo_descriptor->Name = strdup("TAP Dynamics (St)");
stereo_descriptor->Maker = strdup("Tom Szilagyi");
stereo_descriptor->Copyright = strdup("GPL");
stereo_descriptor->PortCount = PORTCOUNT_STEREO;
if ((port_descriptors =
(LADSPA_PortDescriptor *)calloc(PORTCOUNT_STEREO, sizeof(LADSPA_PortDescriptor))) == NULL)
exit(1);
stereo_descriptor->PortDescriptors = (const LADSPA_PortDescriptor *)port_descriptors;
port_descriptors[ATTACK] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL;
port_descriptors[RELEASE] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL;
port_descriptors[OFFSGAIN] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL;
port_descriptors[MUGAIN] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL;
port_descriptors[STEREO] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL;
port_descriptors[MODE] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL;
port_descriptors[RMSENV_L] = LADSPA_PORT_OUTPUT | LADSPA_PORT_CONTROL;
port_descriptors[RMSENV_R] = LADSPA_PORT_OUTPUT | LADSPA_PORT_CONTROL;
port_descriptors[MODGAIN_L] = LADSPA_PORT_OUTPUT | LADSPA_PORT_CONTROL;
port_descriptors[MODGAIN_R] = LADSPA_PORT_OUTPUT | LADSPA_PORT_CONTROL;
port_descriptors[INPUT_L] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO;
port_descriptors[INPUT_R] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO;
port_descriptors[OUTPUT_L] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO;
port_descriptors[OUTPUT_R] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO;
if ((port_names =
(char **)calloc(PORTCOUNT_STEREO, sizeof(char *))) == NULL)
exit(1);
stereo_descriptor->PortNames = (const char **)port_names;
port_names[ATTACK] = strdup("Attack [ms]");
port_names[RELEASE] = strdup("Release [ms]");
port_names[OFFSGAIN] = strdup("Offset Gain [dB]");
port_names[MUGAIN] = strdup("Makeup Gain [dB]");
port_names[STEREO] = strdup("Stereo Mode");
port_names[MODE] = strdup("Function");
port_names[RMSENV_L] = strdup("Envelope Volume (L) [dB]");
port_names[RMSENV_R] = strdup("Envelope Volume (R) [dB]");
port_names[MODGAIN_L] = strdup("Gain Adjustment (L) [dB]");
port_names[MODGAIN_R] = strdup("Gain Adjustment (R) [dB]");
port_names[INPUT_L] = strdup("Input Left");
port_names[INPUT_R] = strdup("Input Right");
port_names[OUTPUT_L] = strdup("Output Left");
port_names[OUTPUT_R] = strdup("Output Right");
if ((port_range_hints =
((LADSPA_PortRangeHint *)calloc(PORTCOUNT_STEREO, sizeof(LADSPA_PortRangeHint)))) == NULL)
exit(1);
stereo_descriptor->PortRangeHints = (const LADSPA_PortRangeHint *)port_range_hints;
port_range_hints[ATTACK].HintDescriptor =
(LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_DEFAULT_LOW);
port_range_hints[RELEASE].HintDescriptor =
(LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_DEFAULT_MIDDLE);
port_range_hints[OFFSGAIN].HintDescriptor =
(LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_DEFAULT_0);
port_range_hints[MUGAIN].HintDescriptor =
(LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_DEFAULT_0);
port_range_hints[RMSENV_L].HintDescriptor =
(LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_DEFAULT_0);
port_range_hints[RMSENV_R].HintDescriptor =
(LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_DEFAULT_0);
port_range_hints[MODGAIN_L].HintDescriptor =
(LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_DEFAULT_0);
port_range_hints[MODGAIN_R].HintDescriptor =
(LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_DEFAULT_0);
port_range_hints[STEREO].HintDescriptor =
(LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_INTEGER |
LADSPA_HINT_DEFAULT_0);
port_range_hints[MODE].HintDescriptor =
(LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_INTEGER |
LADSPA_HINT_DEFAULT_0);
port_range_hints[ATTACK].LowerBound = 4.0f;
port_range_hints[ATTACK].UpperBound = 500.0f;
port_range_hints[RELEASE].LowerBound = 4.0f;
port_range_hints[RELEASE].UpperBound = 1000.0f;
port_range_hints[OFFSGAIN].LowerBound = -20.0f;
port_range_hints[OFFSGAIN].UpperBound = 20.0f;
port_range_hints[MUGAIN].LowerBound = -20.0f;
port_range_hints[MUGAIN].UpperBound = 20.0f;
port_range_hints[RMSENV_L].LowerBound = -60.0f;
port_range_hints[RMSENV_L].UpperBound = 20.0f;
port_range_hints[RMSENV_R].LowerBound = -60.0f;
port_range_hints[RMSENV_R].UpperBound = 20.0f;
port_range_hints[MODGAIN_L].LowerBound = -60.0f;
port_range_hints[MODGAIN_L].UpperBound = 20.0f;
port_range_hints[MODGAIN_R].LowerBound = -60.0f;
port_range_hints[MODGAIN_R].UpperBound = 20.0f;
port_range_hints[STEREO].LowerBound = 0;
port_range_hints[STEREO].UpperBound = 2.1f;
port_range_hints[MODE].LowerBound = 0;
port_range_hints[MODE].UpperBound = NUM_MODES - 0.9f;
port_range_hints[INPUT_L].HintDescriptor = 0;
port_range_hints[INPUT_R].HintDescriptor = 0;
port_range_hints[OUTPUT_L].HintDescriptor = 0;
port_range_hints[OUTPUT_R].HintDescriptor = 0;
stereo_descriptor->instantiate = instantiate_Dynamics;
stereo_descriptor->connect_port = connect_port_Dynamics;
stereo_descriptor->activate = NULL;
stereo_descriptor->run = run_Dynamics;
stereo_descriptor->run_adding = run_adding_Dynamics;
stereo_descriptor->set_run_adding_gain = set_run_adding_gain_Dynamics;
stereo_descriptor->deactivate = NULL;
stereo_descriptor->cleanup = cleanup_Dynamics;
}
void
delete_descriptor(LADSPA_Descriptor * descriptor) {
unsigned long index;
if (descriptor) {
free((char *)descriptor->Label);
free((char *)descriptor->Name);
free((char *)descriptor->Maker);
free((char *)descriptor->Copyright);
free((LADSPA_PortDescriptor *)descriptor->PortDescriptors);
for (index = 0; index < descriptor->PortCount; index++)
free((char *)(descriptor->PortNames[index]));
free((char **)descriptor->PortNames);
free((LADSPA_PortRangeHint *)descriptor->PortRangeHints);
free(descriptor);
}
}
/* __attribute__((destructor)) tap_fini() is called automatically when the library is unloaded. */
void
__attribute__((destructor)) tap_fini() {
delete_descriptor(stereo_descriptor);
}
/* Return a descriptor of the requested plugin type. */
const LADSPA_Descriptor *
ladspa_descriptor(unsigned long Index) {
switch (Index) {
case 0:
return stereo_descriptor;
default:
return NULL;
}
}
|