1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
#ifndef TARANTOOL_LIB_BIT_BIT_H_INCLUDED
#define TARANTOOL_LIB_BIT_BIT_H_INCLUDED
/*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* 1. Redistributions of source code must retain the above
* copyright notice, this list of conditions and the
* following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY <COPYRIGHT HOLDER> ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* <COPYRIGHT HOLDER> OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/**
* @file
* @brief Bit manipulation library
*/
#include "tarantool/config.h"
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#if defined(HAVE_FFSL) || defined(HAVE_FFSLL)
#include <string.h>
#include <strings.h>
#endif /* defined(HAVE_FFSL) || defined(HAVE_FFSLL) */
#include <limits.h>
#if defined(__cplusplus)
extern "C" {
#endif /* defined(__cplusplus) */
/** @cond false **/
#define bit_likely(x) __builtin_expect((x),1)
#define bit_unlikely(x) __builtin_expect((x),0)
/** @endcond **/
/**
* @brief Test bit \a pos in memory chunk \a data
* @param data memory chunk
* @param pos bit number (zero-based)
* @retval true bit \a pos is set in \a data
* @retval false otherwise
*/
inline bool
bit_test(const void *data, size_t pos)
{
size_t chunk = pos / CHAR_BIT;
size_t offset = pos % CHAR_BIT;
const unsigned char *cdata = (const unsigned char *) data;
return (cdata[chunk] >> offset) & 0x1;
}
/**
* @brief Set bit \a pos in a memory chunk \a data
* @param data memory chunk
* @param pos bit number (zero-based)
* @return previous value
* @see bit_test
* @see bit_clear
*/
inline bool
bit_set(void *data, size_t pos)
{
size_t chunk = pos / CHAR_BIT;
size_t offset = pos % CHAR_BIT;
unsigned char *cdata = (unsigned char *) data;
bool prev = (cdata[chunk] >> offset) & 0x1;
cdata[chunk] |= (1U << offset);
return prev;
}
/**
* @brief Clear bit \a pos in memory chunk \a data
* @param data memory chunk
* @param pos bit number (zero-based)
* @return previous value
* @see bit_test
* @see bit_set
*/
inline bool
bit_clear(void *data, size_t pos)
{
size_t chunk = pos / CHAR_BIT;
size_t offset = pos % CHAR_BIT;
unsigned char *cdata = (unsigned char *) data;
bool prev = (cdata[chunk] >> offset) & 0x1;
cdata[chunk] &= ~(1U << offset);
return prev;
}
/**
* @cond false
* @brief Naive implementation of ctz.
*/
#define CTZ_NAIVE(x, bitsize) { \
if (x == 0) { \
return (bitsize); \
} \
\
int r = 0; \
for (; (x & 1) == 0; r++) { \
x >>= 1; \
} \
\
return r; \
}
/** @endcond */
/**
* @brief Count Trailing Zeros.
* Returns the number of trailing 0-bits in @a x, starting at the least
* significant bit position. If @a x is 0, the result is undefined.
* @param x integer
* @see __builtin_ctz()
* @return the number trailing 0-bits
*/
inline int
bit_ctz_u32(uint32_t x)
{
#if defined(HAVE_BUILTIN_CTZ)
return __builtin_ctz(x);
#elif defined(HAVE_FFSL)
return ffsl(x) - 1;
#else
CTZ_NAIVE(x, sizeof(uint32_t) * CHAR_BIT);
#endif
}
/**
* @copydoc bit_ctz_u32
*/
inline int
bit_ctz_u64(uint64_t x)
{
#if defined(HAVE_BUILTIN_CTZLL)
return __builtin_ctzll(x);
#elif defined(HAVE_FFSLL)
return ffsll(x) - 1;
#else
CTZ_NAIVE(x, sizeof(uint64_t) * CHAR_BIT);
#endif
}
#undef CTZ_NAIVE
/**
* @cond false
* @brief Naive implementation of clz.
*/
#define CLZ_NAIVE(x, bitsize) { \
if (x == 0) { \
return (bitsize); \
} \
\
int r = (bitsize); \
for (; x; r--) { \
x >>= 1; \
} \
\
return r; \
}
/** @endcond */
/**
* @brief Count Leading Zeros.
* Returns the number of leading 0-bits in @a x, starting at the most
* significant bit position. If @a x is 0, the result is undefined.
* @param x integer
* @see __builtin_clz()
* @return the number of leading 0-bits
*/
inline int
bit_clz_u32(uint32_t x)
{
#if defined(HAVE_BUILTIN_CLZ)
return __builtin_clz(x);
#else /* !defined(HAVE_BUILTIN_CLZ) */
CLZ_NAIVE(x, sizeof(uint32_t) * CHAR_BIT);
#endif
}
/**
* @copydoc bit_clz_u32
*/
inline int
bit_clz_u64(uint64_t x)
{
#if defined(HAVE_BUILTIN_CLZLL)
return __builtin_clzll(x);
#else /* !defined(HAVE_BUILTIN_CLZLL) */
CLZ_NAIVE(x, sizeof(uint64_t) * CHAR_BIT);
#endif
}
#undef CLZ_NAIVE
/**
* @cond false
* @brief Naive implementation of popcount.
*/
#define POPCOUNT_NAIVE(x, bitsize) { \
int r; \
for (r = 0; x; r++) { \
x &= (x-1); \
} \
\
return r; \
}
/** @endcond */
/**
* @brief Returns the number of 1-bits in @a x.
* @param x integer
* @see __builtin_popcount()
* @return the number of 1-bits in @a x
*/
inline int
bit_count_u32(uint32_t x)
{
#if defined(HAVE_BUILTIN_POPCOUNT)
return __builtin_popcount(x);
#else /* !defined(HAVE_BUILTIN_POPCOUNT) */
POPCOUNT_NAIVE(x, sizeof(uint32_t) * CHAR_BIT);
#endif
}
/**
* @copydoc bit_count_u32
*/
inline int
bit_count_u64(uint64_t x)
{
#if defined(HAVE_BUILTIN_POPCOUNTLL)
return __builtin_popcountll(x);
#else /* !defined(HAVE_BUILTIN_POPCOUNTLL) */
POPCOUNT_NAIVE(x, sizeof(uint64_t) * CHAR_BIT);
#endif
}
#undef POPCOUNT_NAIVE
/**
* @brief Rotate @a x left by @a r bits
* @param x integer
* @param r number for bits to rotate
* @return @a x rotated left by @a r bits
*/
inline uint32_t
bit_rotl_u32(uint32_t x, int r)
{
/* gcc recognises this code and generates a rotate instruction */
return ((x << r) | (x >> (32 - r)));
}
/**
* @copydoc bit_rotl_u32
*/
inline uint64_t
bit_rotl_u64(uint64_t x, int r)
{
/* gcc recognises this code and generates a rotate instruction */
return ((x << r) | (x >> (64 - r)));
}
/**
* @copydoc bit_rotl_u32
*/
__attribute__ ((const)) inline uintmax_t
bit_rotl_umax(uintmax_t x, int r)
{
/* gcc recognises this code and generates a rotate instruction */
return ((x << r) | (x >> (sizeof(uintmax_t) * CHAR_BIT - r)));
}
/**
* @brief Rotate @a x right by @a r bits
* @param x integer
* @param r number for bits to rotate
* @return @a x rotated right by @a r bits
* @todo Move this method to bit.h
*/
inline uint32_t
bit_rotr_u32(uint32_t x, int r)
{
/* gcc recognises this code and generates a rotate instruction */
return ((x >> r) | (x << (32 - r)));
}
/**
* @copydoc bit_rotr_u32
*/
inline uint64_t
bit_rotr_u64(uint64_t x, int r)
{
/* gcc recognises this code and generates a rotate instruction */
return ((x >> r) | (x << (64 - r)));
}
/**
* @brief Returns a byte order swapped integer @a x.
* This function does not take into account host architecture
* (as it done by htonl / ntohl functions) and always returns @a x
* with byte order swapped (BE -> LE if @a x is in BE and vice versa).
* @param x integer
* @return @a x with swapped bytes
*/
inline uint32_t
bswap_u32(uint32_t x)
{
#if defined(HAVE_BUILTIN_BSWAP32)
return __builtin_bswap32(x);
#else /* !defined(HAVE_BUILTIN_BSWAP32) */
return ((x << 24) & UINT32_C(0xff000000)) |
((x << 8) & UINT32_C(0x00ff0000)) |
((x >> 8) & UINT32_C(0x0000ff00)) |
((x >> 24) & UINT32_C(0x000000ff));
#endif
}
/**
* @copydoc bswap_u32
*/
inline uint64_t
bswap_u64(uint64_t x)
{
#if defined(HAVE_BUILTIN_BSWAP64)
return __builtin_bswap64(x);
#else /* !defined(HAVE_BUILTIN_BSWAP64) */
return ( (x << 56) & UINT64_C(0xff00000000000000)) |
( (x << 40) & UINT64_C(0x00ff000000000000)) |
( (x << 24) & UINT64_C(0x0000ff0000000000)) |
( (x << 8) & UINT64_C(0x000000ff00000000)) |
( (x >> 8) & UINT64_C(0x00000000ff000000)) |
( (x >> 24) & UINT64_C(0x0000000000ff0000)) |
( (x >> 40) & UINT64_C(0x000000000000ff00)) |
( (x >> 56) & UINT64_C(0x00000000000000ff));
#endif
}
/**
* @brief Index bits in the @a x, i.e. find all positions where bits are set.
* This method fills @a indexes array with found positions in increasing order.
* @a offset is added to each index before putting it into @a indexes.
* @param x integer
* @param indexes memory array where found indexes are stored
* @param offset a number added to each index
* @return pointer to last+1 element in indexes array
*/
int *
bit_index_u32(uint32_t x, int *indexes, int offset);
/**
* @copydoc bit_index_u32
*/
int *
bit_index_u64(uint64_t x, int *indexes, int offset);
/** @cond false **/
#if defined(__x86_64__)
/* Use bigger words on x86_64 */
#define ITER_UINT uint64_t
#define ITER_CTZ bit_ctz_u64
#else
#define ITER_UINT uint32_t
#define ITER_CTZ bit_ctz_u32
#endif
/** @endcond **/
/**
* @brief The Bit Iterator
*/
struct bit_iterator {
/** @cond false **/
/** Current word to process using ctz **/
ITER_UINT word;
/** A bitmask that XORed with word (for set = false iteration) **/
ITER_UINT word_xor;
/** A base offset of the word in bits **/
size_t word_base;
/** A pointer to the start of a memory chunk **/
const char *start;
/** A pointer to the next part of a memory chunk */
const char *next;
/** A pointer to the end of a memory chunk */
const char *end;
/** @endcond **/
};
/**
* @brief Initialize bit iterator \a it
* @param it bit iterator
* @param data memory chunk
* @param size size of the memory chunk \a data
* @param set true to iterate over set bits or false to iterate over clear bits
*/
inline void
bit_iterator_init(struct bit_iterator *it, const void *data, size_t size,
bool set)
{
it->start = (const char *) data;
it->next = it->start;
it->end = it->next + size;
it->word_xor = set ? 0 : (ITER_UINT) -1;
it->word_base = 0;
/* Check if size is a multiple of sizeof(ITER_UINT) */
const char *e = it->next + size % sizeof(ITER_UINT);
if (bit_likely(it->next == e)) {
it->word = *(ITER_UINT *) it->next;
it->word ^= it->word_xor;
it->next += sizeof(ITER_UINT);
return;
}
it->word = it->word_xor;
char *w = (char *) &it->word;
while (it->next < e) {
*w = *it->next;
it->next++;
w++;
}
it->word ^= it->word_xor;
}
/**
* @brief Return a number of a next set bit in \a it or \a SIZE_MAX
* if no bits are remain in \a it
* @param it bit iterator
* @retval a zero-based number of a next set bit in iterator \a it
* @retval SIZE_MAX if \a it does not have more set bits
*/
inline size_t
bit_iterator_next(struct bit_iterator *it)
{
while (bit_unlikely(it->word == 0)) {
if (bit_unlikely(it->next >= it->end))
return SIZE_MAX;
/* Extract the next word from memory */
it->word = *(ITER_UINT *) it->next;
it->word ^= it->word_xor;
it->word_base = (it->next - it->start) * CHAR_BIT;
it->next += sizeof(ITER_UINT);
}
/* Find the position of a first traling bit in the current word */
int bit = ITER_CTZ(it->word);
/* Remove the first trailing bit from the current word */
it->word &= it->word - 1;
/* Add start position if the current word to the found bit */
return it->word_base + bit;
}
#undef ITER_CTZ
#undef ITER_UINT
#if defined(__cplusplus)
} /* extern "C" */
#endif /* defined(__cplusplus) */
#endif /* TARANTOOL_LIB_BIT_BIT_H_INCLUDED */
|