File: Pzstd.cpp

package info (click to toggle)
tarantool 1.7.2.385.g952d79e-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 21,556 kB
  • ctags: 28,405
  • sloc: ansic: 180,313; cpp: 26,044; sh: 15,513; python: 4,893; makefile: 1,412
file content (483 lines) | stat: -rw-r--r-- 17,034 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
/**
 * Copyright (c) 2016-present, Facebook, Inc.
 * All rights reserved.
 *
 * This source code is licensed under the BSD-style license found in the
 * LICENSE file in the root directory of this source tree. An additional grant
 * of patent rights can be found in the PATENTS file in the same directory.
 */
#include "Pzstd.h"
#include "SkippableFrame.h"
#include "utils/FileSystem.h"
#include "utils/Range.h"
#include "utils/ScopeGuard.h"
#include "utils/ThreadPool.h"
#include "utils/WorkQueue.h"

#include <cstddef>
#include <cstdio>
#include <memory>
#include <string>

namespace pzstd {

namespace {
#ifdef _WIN32
const std::string nullOutput = "nul";
#else
const std::string nullOutput = "/dev/null";
#endif
}

using std::size_t;

size_t pzstdMain(const Options& options, ErrorHolder& errorHolder) {
  // Open the input file and attempt to determine its size
  FILE* inputFd = stdin;
  std::uintmax_t inputSize = 0;
  if (options.inputFile != "-") {
    inputFd = std::fopen(options.inputFile.c_str(), "rb");
    if (!errorHolder.check(inputFd != nullptr, "Failed to open input file")) {
      return 0;
    }
    std::error_code ec;
    inputSize = file_size(options.inputFile, ec);
    if (ec) {
      inputSize = 0;
    }
  }
  auto closeInputGuard = makeScopeGuard([&] { std::fclose(inputFd); });

  // Check if the output file exists and then open it
  FILE* outputFd = stdout;
  if (options.outputFile != "-") {
    if (!options.overwrite && options.outputFile != nullOutput) {
      outputFd = std::fopen(options.outputFile.c_str(), "rb");
      if (!errorHolder.check(outputFd == nullptr, "Output file exists")) {
        return 0;
      }
    }
    outputFd = std::fopen(options.outputFile.c_str(), "wb");
    if (!errorHolder.check(
            outputFd != nullptr, "Failed to open output file")) {
      return 0;
    }
  }
  auto closeOutputGuard = makeScopeGuard([&] { std::fclose(outputFd); });

  // WorkQueue outlives ThreadPool so in the case of error we are certain
  // we don't accidently try to call push() on it after it is destroyed.
  WorkQueue<std::shared_ptr<BufferWorkQueue>> outs{2 * options.numThreads};
  size_t bytesWritten;
  {
    // Initialize the thread pool with numThreads + 1
    // We add one because the read thread spends most of its time waiting.
    // This also sets the minimum number of threads to 2, so the algorithm
    // doesn't deadlock.
    ThreadPool executor(options.numThreads + 1);
    if (!options.decompress) {
      // Add a job that reads the input and starts all the compression jobs
      executor.add(
          [&errorHolder, &outs, &executor, inputFd, inputSize, &options] {
            asyncCompressChunks(
                errorHolder,
                outs,
                executor,
                inputFd,
                inputSize,
                options.numThreads,
                options.determineParameters());
          });
      // Start writing
      bytesWritten =
          writeFile(errorHolder, outs, outputFd, options.pzstdHeaders);
    } else {
      // Add a job that reads the input and starts all the decompression jobs
      executor.add([&errorHolder, &outs, &executor, inputFd] {
        asyncDecompressFrames(errorHolder, outs, executor, inputFd);
      });
      // Start writing
      bytesWritten = writeFile(
          errorHolder, outs, outputFd, /* writeSkippableFrames */ false);
    }
  }
  return bytesWritten;
}

/// Construct a `ZSTD_inBuffer` that points to the data in `buffer`.
static ZSTD_inBuffer makeZstdInBuffer(const Buffer& buffer) {
  return ZSTD_inBuffer{buffer.data(), buffer.size(), 0};
}

/**
 * Advance `buffer` and `inBuffer` by the amount of data read, as indicated by
 * `inBuffer.pos`.
 */
void advance(Buffer& buffer, ZSTD_inBuffer& inBuffer) {
  auto pos = inBuffer.pos;
  inBuffer.src = static_cast<const unsigned char*>(inBuffer.src) + pos;
  inBuffer.size -= pos;
  inBuffer.pos = 0;
  return buffer.advance(pos);
}

/// Construct a `ZSTD_outBuffer` that points to the data in `buffer`.
static ZSTD_outBuffer makeZstdOutBuffer(Buffer& buffer) {
  return ZSTD_outBuffer{buffer.data(), buffer.size(), 0};
}

/**
 * Split `buffer` and advance `outBuffer` by the amount of data written, as
 * indicated by `outBuffer.pos`.
 */
Buffer split(Buffer& buffer, ZSTD_outBuffer& outBuffer) {
  auto pos = outBuffer.pos;
  outBuffer.dst = static_cast<unsigned char*>(outBuffer.dst) + pos;
  outBuffer.size -= pos;
  outBuffer.pos = 0;
  return buffer.splitAt(pos);
}

/**
 * Stream chunks of input from `in`, compress it, and stream it out to `out`.
 *
 * @param errorHolder Used to report errors and check if an error occured
 * @param in           Queue that we `pop()` input buffers from
 * @param out          Queue that we `push()` compressed output buffers to
 * @param maxInputSize An upper bound on the size of the input
 * @param parameters   The zstd parameters to use for compression
 */
static void compress(
    ErrorHolder& errorHolder,
    std::shared_ptr<BufferWorkQueue> in,
    std::shared_ptr<BufferWorkQueue> out,
    size_t maxInputSize,
    ZSTD_parameters parameters) {
  auto guard = makeScopeGuard([&] { out->finish(); });
  // Initialize the CCtx
  std::unique_ptr<ZSTD_CStream, size_t (*)(ZSTD_CStream*)> ctx(
      ZSTD_createCStream(), ZSTD_freeCStream);
  if (!errorHolder.check(ctx != nullptr, "Failed to allocate ZSTD_CStream")) {
    return;
  }
  {
    auto err = ZSTD_initCStream_advanced(ctx.get(), nullptr, 0, parameters, 0);
    if (!errorHolder.check(!ZSTD_isError(err), ZSTD_getErrorName(err))) {
      return;
    }
  }

  // Allocate space for the result
  auto outBuffer = Buffer(ZSTD_compressBound(maxInputSize));
  auto zstdOutBuffer = makeZstdOutBuffer(outBuffer);
  {
    Buffer inBuffer;
    // Read a buffer in from the input queue
    while (in->pop(inBuffer) && !errorHolder.hasError()) {
      auto zstdInBuffer = makeZstdInBuffer(inBuffer);
      // Compress the whole buffer and send it to the output queue
      while (!inBuffer.empty() && !errorHolder.hasError()) {
        if (!errorHolder.check(
                !outBuffer.empty(), "ZSTD_compressBound() was too small")) {
          return;
        }
        // Compress
        auto err =
            ZSTD_compressStream(ctx.get(), &zstdOutBuffer, &zstdInBuffer);
        if (!errorHolder.check(!ZSTD_isError(err), ZSTD_getErrorName(err))) {
          return;
        }
        // Split the compressed data off outBuffer and pass to the output queue
        out->push(split(outBuffer, zstdOutBuffer));
        // Forget about the data we already compressed
        advance(inBuffer, zstdInBuffer);
      }
    }
  }
  // Write the epilog
  size_t bytesLeft;
  do {
    if (!errorHolder.check(
            !outBuffer.empty(), "ZSTD_compressBound() was too small")) {
      return;
    }
    bytesLeft = ZSTD_endStream(ctx.get(), &zstdOutBuffer);
    if (!errorHolder.check(
            !ZSTD_isError(bytesLeft), ZSTD_getErrorName(bytesLeft))) {
      return;
    }
    out->push(split(outBuffer, zstdOutBuffer));
  } while (bytesLeft != 0 && !errorHolder.hasError());
}

/**
 * Calculates how large each independently compressed frame should be.
 *
 * @param size       The size of the source if known, 0 otherwise
 * @param numThreads The number of threads available to run compression jobs on
 * @param params     The zstd parameters to be used for compression
 */
static size_t calculateStep(
    std::uintmax_t size,
    size_t numThreads,
    const ZSTD_parameters &params) {
  size_t step = size_t{1} << (params.cParams.windowLog + 2);
  // If file size is known, see if a smaller step will spread work more evenly
  if (size != 0) {
    const std::uintmax_t newStep = size / std::uintmax_t{numThreads};
    if (newStep != 0 &&
        newStep <= std::uintmax_t{std::numeric_limits<size_t>::max()}) {
      step = std::min(step, size_t{newStep});
    }
  }
  return step;
}

namespace {
enum class FileStatus { Continue, Done, Error };
/// Determines the status of the file descriptor `fd`.
FileStatus fileStatus(FILE* fd) {
  if (std::feof(fd)) {
    return FileStatus::Done;
  } else if (std::ferror(fd)) {
    return FileStatus::Error;
  }
  return FileStatus::Continue;
}
} // anonymous namespace

/**
 * Reads `size` data in chunks of `chunkSize` and puts it into `queue`.
 * Will read less if an error or EOF occurs.
 * Returns the status of the file after all of the reads have occurred.
 */
static FileStatus
readData(BufferWorkQueue& queue, size_t chunkSize, size_t size, FILE* fd) {
  Buffer buffer(size);
  while (!buffer.empty()) {
    auto bytesRead =
        std::fread(buffer.data(), 1, std::min(chunkSize, buffer.size()), fd);
    queue.push(buffer.splitAt(bytesRead));
    auto status = fileStatus(fd);
    if (status != FileStatus::Continue) {
      return status;
    }
  }
  return FileStatus::Continue;
}

void asyncCompressChunks(
    ErrorHolder& errorHolder,
    WorkQueue<std::shared_ptr<BufferWorkQueue>>& chunks,
    ThreadPool& executor,
    FILE* fd,
    std::uintmax_t size,
    size_t numThreads,
    ZSTD_parameters params) {
  auto chunksGuard = makeScopeGuard([&] { chunks.finish(); });

  // Break the input up into chunks of size `step` and compress each chunk
  // independently.
  size_t step = calculateStep(size, numThreads, params);
  auto status = FileStatus::Continue;
  while (status == FileStatus::Continue && !errorHolder.hasError()) {
    // Make a new input queue that we will put the chunk's input data into.
    auto in = std::make_shared<BufferWorkQueue>();
    auto inGuard = makeScopeGuard([&] { in->finish(); });
    // Make a new output queue that compress will put the compressed data into.
    auto out = std::make_shared<BufferWorkQueue>();
    // Start compression in the thread pool
    executor.add([&errorHolder, in, out, step, params] {
      return compress(
          errorHolder, std::move(in), std::move(out), step, params);
    });
    // Pass the output queue to the writer thread.
    chunks.push(std::move(out));
    // Fill the input queue for the compression job we just started
    status = readData(*in, ZSTD_CStreamInSize(), step, fd);
  }
  errorHolder.check(status != FileStatus::Error, "Error reading input");
}

/**
 * Decompress a frame, whose data is streamed into `in`, and stream the output
 * to `out`.
 *
 * @param errorHolder Used to report errors and check if an error occured
 * @param in           Queue that we `pop()` input buffers from. It contains
 *                      exactly one compressed frame.
 * @param out          Queue that we `push()` decompressed output buffers to
 */
static void decompress(
    ErrorHolder& errorHolder,
    std::shared_ptr<BufferWorkQueue> in,
    std::shared_ptr<BufferWorkQueue> out) {
  auto guard = makeScopeGuard([&] { out->finish(); });
  // Initialize the DCtx
  std::unique_ptr<ZSTD_DStream, size_t (*)(ZSTD_DStream*)> ctx(
      ZSTD_createDStream(), ZSTD_freeDStream);
  if (!errorHolder.check(ctx != nullptr, "Failed to allocate ZSTD_DStream")) {
    return;
  }
  {
    auto err = ZSTD_initDStream(ctx.get());
    if (!errorHolder.check(!ZSTD_isError(err), ZSTD_getErrorName(err))) {
      return;
    }
  }

  const size_t outSize = ZSTD_DStreamOutSize();
  Buffer inBuffer;
  size_t returnCode = 0;
  // Read a buffer in from the input queue
  while (in->pop(inBuffer) && !errorHolder.hasError()) {
    auto zstdInBuffer = makeZstdInBuffer(inBuffer);
    // Decompress the whole buffer and send it to the output queue
    while (!inBuffer.empty() && !errorHolder.hasError()) {
      // Allocate a buffer with at least outSize bytes.
      Buffer outBuffer(outSize);
      auto zstdOutBuffer = makeZstdOutBuffer(outBuffer);
      // Decompress
      returnCode =
          ZSTD_decompressStream(ctx.get(), &zstdOutBuffer, &zstdInBuffer);
      if (!errorHolder.check(
              !ZSTD_isError(returnCode), ZSTD_getErrorName(returnCode))) {
        return;
      }
      // Pass the buffer with the decompressed data to the output queue
      out->push(split(outBuffer, zstdOutBuffer));
      // Advance past the input we already read
      advance(inBuffer, zstdInBuffer);
      if (returnCode == 0) {
        // The frame is over, prepare to (maybe) start a new frame
        ZSTD_initDStream(ctx.get());
      }
    }
  }
  if (!errorHolder.check(returnCode <= 1, "Incomplete block")) {
    return;
  }
  // We've given ZSTD_decompressStream all of our data, but there may still
  // be data to read.
  while (returnCode == 1) {
    // Allocate a buffer with at least outSize bytes.
    Buffer outBuffer(outSize);
    auto zstdOutBuffer = makeZstdOutBuffer(outBuffer);
    // Pass in no input.
    ZSTD_inBuffer zstdInBuffer{nullptr, 0, 0};
    // Decompress
    returnCode =
        ZSTD_decompressStream(ctx.get(), &zstdOutBuffer, &zstdInBuffer);
    if (!errorHolder.check(
            !ZSTD_isError(returnCode), ZSTD_getErrorName(returnCode))) {
      return;
    }
    // Pass the buffer with the decompressed data to the output queue
    out->push(split(outBuffer, zstdOutBuffer));
  }
}

void asyncDecompressFrames(
    ErrorHolder& errorHolder,
    WorkQueue<std::shared_ptr<BufferWorkQueue>>& frames,
    ThreadPool& executor,
    FILE* fd) {
  auto framesGuard = makeScopeGuard([&] { frames.finish(); });
  // Split the source up into its component frames.
  // If we find our recognized skippable frame we know the next frames size
  // which means that we can decompress each standard frame in independently.
  // Otherwise, we will decompress using only one decompression task.
  const size_t chunkSize = ZSTD_DStreamInSize();
  auto status = FileStatus::Continue;
  while (status == FileStatus::Continue && !errorHolder.hasError()) {
    // Make a new input queue that we will put the frames's bytes into.
    auto in = std::make_shared<BufferWorkQueue>();
    auto inGuard = makeScopeGuard([&] { in->finish(); });
    // Make a output queue that decompress will put the decompressed data into
    auto out = std::make_shared<BufferWorkQueue>();

    size_t frameSize;
    {
      // Calculate the size of the next frame.
      // frameSize is 0 if the frame info can't be decoded.
      Buffer buffer(SkippableFrame::kSize);
      auto bytesRead = std::fread(buffer.data(), 1, buffer.size(), fd);
      status = fileStatus(fd);
      if (bytesRead == 0 && status != FileStatus::Continue) {
        break;
      }
      buffer.subtract(buffer.size() - bytesRead);
      frameSize = SkippableFrame::tryRead(buffer.range());
      in->push(std::move(buffer));
    }
    if (frameSize == 0) {
      // We hit a non SkippableFrame, so this will be the last job.
      // Make sure that we don't use too much memory
      in->setMaxSize(64);
      out->setMaxSize(64);
    }
    // Start decompression in the thread pool
    executor.add([&errorHolder, in, out] {
      return decompress(errorHolder, std::move(in), std::move(out));
    });
    // Pass the output queue to the writer thread
    frames.push(std::move(out));
    if (frameSize == 0) {
      // We hit a non SkippableFrame ==> not compressed by pzstd or corrupted
      // Pass the rest of the source to this decompression task
      while (status == FileStatus::Continue && !errorHolder.hasError()) {
        status = readData(*in, chunkSize, chunkSize, fd);
      }
      break;
    }
    // Fill the input queue for the decompression job we just started
    status = readData(*in, chunkSize, frameSize, fd);
  }
  errorHolder.check(status != FileStatus::Error, "Error reading input");
}

/// Write `data` to `fd`, returns true iff success.
static bool writeData(ByteRange data, FILE* fd) {
  while (!data.empty()) {
    data.advance(std::fwrite(data.begin(), 1, data.size(), fd));
    if (std::ferror(fd)) {
      return false;
    }
  }
  return true;
}

size_t writeFile(
    ErrorHolder& errorHolder,
    WorkQueue<std::shared_ptr<BufferWorkQueue>>& outs,
    FILE* outputFd,
    bool writeSkippableFrames) {
  size_t bytesWritten = 0;
  std::shared_ptr<BufferWorkQueue> out;
  // Grab the output queue for each decompression job (in order).
  while (outs.pop(out) && !errorHolder.hasError()) {
    if (writeSkippableFrames) {
      // If we are compressing and want to write skippable frames we can't
      // start writing before compression is done because we need to know the
      // compressed size.
      // Wait for the compressed size to be available and write skippable frame
      SkippableFrame frame(out->size());
      if (!writeData(frame.data(), outputFd)) {
        errorHolder.setError("Failed to write output");
        return bytesWritten;
      }
      bytesWritten += frame.kSize;
    }
    // For each chunk of the frame: Pop it from the queue and write it
    Buffer buffer;
    while (out->pop(buffer) && !errorHolder.hasError()) {
      if (!writeData(buffer.range(), outputFd)) {
        errorHolder.setError("Failed to write output");
        return bytesWritten;
      }
      bytesWritten += buffer.size();
    }
  }
  return bytesWritten;
}
}