1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
#include <stdint.h>
#include <stdio.h>
#include <stdbool.h>
#include <inttypes.h>
#include "unit.h"
#include "salad/rtree.h"
static int page_count = 0;
const uint32_t extent_size = 1024 * 8;
static void *
extent_alloc(void *ctx)
{
int *p_page_count = (int *)ctx;
assert(p_page_count == &page_count);
++*p_page_count;
return malloc(extent_size);
}
static void
extent_free(void *ctx, void *page)
{
int *p_page_count = (int *)ctx;
assert(p_page_count == &page_count);
--*p_page_count;
free(page);
}
static void
simple_check()
{
struct rtree_rect rect;
struct rtree_iterator iterator;
rtree_iterator_init(&iterator);
const size_t rounds = 2000;
header();
struct rtree tree;
rtree_init(&tree, 2, extent_size,
extent_alloc, extent_free, &page_count,
RTREE_EUCLID);
printf("Insert 1..X, remove 1..X\n");
for (size_t i = 1; i <= rounds; i++) {
record_t rec = (record_t)i;
rtree_set2d(&rect, i, i, i + 0.5, i + 0.5);
if (rtree_search(&tree, &rect, SOP_EQUALS, &iterator)) {
fail("element already in tree (1)", "true");
}
rtree_insert(&tree, &rect, rec);
}
if (rtree_number_of_records(&tree) != rounds) {
fail("Tree count mismatch (1)", "true");
}
for (size_t i = 1; i <= rounds; i++) {
record_t rec = (record_t)i;
rtree_set2d(&rect, i, i, i + 0.5, i + 0.5);
if (!rtree_search(&tree, &rect, SOP_EQUALS, &iterator)) {
fail("element in tree (1)", "false");
}
if (rtree_iterator_next(&iterator) != rec) {
fail("right search result (1)", "true");
}
if (rtree_iterator_next(&iterator)) {
fail("single search result (1)", "true");
}
if (!rtree_remove(&tree, &rect, rec)) {
fail("delete element in tree (1)", "false");
}
if (rtree_search(&tree, &rect, SOP_EQUALS, &iterator)) {
fail("element still in tree (1)", "true");
}
}
if (rtree_number_of_records(&tree) != 0) {
fail("Tree count mismatch (1)", "true");
}
printf("Insert 1..X, remove X..1\n");
for (size_t i = 1; i <= rounds; i++) {
record_t rec = (record_t)i;
rtree_set2d(&rect, i, i, i + 0.5, i + 0.5);
if (rtree_search(&tree, &rect, SOP_EQUALS, &iterator)) {
fail("element already in tree (2)", "true");
}
rtree_insert(&tree, &rect, rec);
}
if (rtree_number_of_records(&tree) != rounds) {
fail("Tree count mismatch (2)", "true");
}
for (size_t i = rounds; i != 0; i--) {
record_t rec = (record_t)i;
rtree_set2d(&rect, i, i, i + 0.5, i + 0.5);
if (!rtree_search(&tree, &rect, SOP_OVERLAPS, &iterator)) {
fail("element in tree (2)", "false");
}
if (rtree_iterator_next(&iterator) != rec) {
fail("right search result (2)", "true");
}
if (rtree_iterator_next(&iterator)) {
fail("single search result (2)", "true");
}
if (!rtree_remove(&tree, &rect, rec)) {
fail("delete element in tree (2)", "false");
}
if (rtree_search(&tree, &rect, SOP_OVERLAPS, &iterator)) {
fail("element still in tree (2)", "true");
}
}
if (rtree_number_of_records(&tree) != 0) {
fail("Tree count mismatch (2)", "true");
}
printf("Insert X..1, remove 1..X\n");
for (size_t i = rounds; i != 0; i--) {
record_t rec = (record_t)i;
rtree_set2d(&rect, i, i, i + 0.5, i + 0.5);
if (rtree_search(&tree, &rect, SOP_BELONGS, &iterator)) {
fail("element already in tree (3)", "true");
}
rtree_insert(&tree, &rect, rec);
}
if (rtree_number_of_records(&tree) != rounds) {
fail("Tree count mismatch (3)", "true");
}
for (size_t i = 1; i <= rounds; i++) {
record_t rec = (record_t)i;
rtree_set2d(&rect, i, i, i + 0.5, i + 0.5);
if (!rtree_search(&tree, &rect, SOP_BELONGS, &iterator)) {
fail("element in tree (3)", "false");
}
if (rtree_iterator_next(&iterator) != rec) {
fail("right search result (3)", "true");
}
if (rtree_iterator_next(&iterator)) {
fail("single search result (3)", "true");
}
if (!rtree_remove(&tree, &rect, rec)) {
fail("delete element in tree (3)", "false");
}
if (rtree_search(&tree, &rect, SOP_BELONGS, &iterator)) {
fail("element still in tree (3)", "true");
}
}
if (rtree_number_of_records(&tree) != 0) {
fail("Tree count mismatch (3)", "true");
}
printf("Insert X..1, remove X..1\n");
for (size_t i = rounds; i != 0; i--) {
record_t rec = (record_t)i;
rtree_set2d(&rect, i, i, i + 0.5, i + 0.5);
if (rtree_search(&tree, &rect, SOP_CONTAINS, &iterator)) {
fail("element already in tree (4)", "true");
}
rtree_insert(&tree, &rect, rec);
}
if (rtree_number_of_records(&tree) != rounds) {
fail("Tree count mismatch (4)", "true");
}
for (size_t i = rounds; i != 0; i--) {
record_t rec = (record_t)i;
rtree_set2d(&rect, i, i, i + 0.5, i + 0.5);
if (!rtree_search(&tree, &rect, SOP_CONTAINS, &iterator)) {
fail("element in tree (4)", "false");
}
if (rtree_iterator_next(&iterator) != rec) {
fail("right search result (4)", "true");
}
if (rtree_iterator_next(&iterator)) {
fail("single search result (4)", "true");
}
if (!rtree_remove(&tree, &rect, rec)) {
fail("delete element in tree (4)", "false");
}
if (rtree_search(&tree, &rect, SOP_CONTAINS, &iterator)) {
fail("element still in tree (4)", "true");
}
}
if (rtree_number_of_records(&tree) != 0) {
fail("Tree count mismatch (4)", "true");
}
rtree_purge(&tree);
rtree_destroy(&tree);
rtree_iterator_destroy(&iterator);
footer();
}
static void
rtree_test_build(struct rtree *tree, struct rtree_rect *arr, int count)
{
for (ssize_t i = 0; i < count; i++) {
record_t rec = (record_t)(i + 1);
rtree_insert(tree, &arr[i], rec);
}
}
static void
neighbor_test()
{
header();
const unsigned int test_count = 1000;
struct rtree_rect arr[test_count];
static struct rtree_rect basis;
for (size_t i = 0; i < test_count; i++) {
rtree_set2d(&arr[i], i, i, i + 1, i + 1);
}
for (size_t i = 0; i <= test_count; i++) {
struct rtree tree;
rtree_init(&tree, 2, extent_size,
extent_alloc, extent_free, &page_count,
RTREE_EUCLID);
rtree_test_build(&tree, arr, i);
struct rtree_iterator iterator;
rtree_iterator_init(&iterator);
if (!rtree_search(&tree, &basis, SOP_NEIGHBOR, &iterator) && i != 0) {
fail("search is successful", "true");
}
for (size_t j = 0; j < i; j++) {
record_t rec = rtree_iterator_next(&iterator);
if (rec != record_t(j+1)) {
fail("wrong search result", "true");
}
}
rtree_iterator_destroy(&iterator);
rtree_destroy(&tree);
}
struct rtree_iterator iterator;
rtree_iterator_init(&iterator);
struct rtree tree;
rtree_init(&tree, 2, extent_size, extent_alloc, extent_free, &page_count,
RTREE_EUCLID);
if (rtree_search(&tree, &basis, SOP_NEIGHBOR, &iterator)) {
fail("found in empty", "true");
}
/*
* Test unchecked return value from rtree_search
*/
record_t rec = rtree_iterator_next(&iterator);
if (rec != NULL) {
fail("something found from empty iterator ", "true");
}
rtree_iterator_destroy(&iterator);
footer();
}
int
main(void)
{
simple_check();
neighbor_test();
if (page_count != 0) {
fail("memory leak!", "true");
}
}
|