1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
#include <stdint.h>
#include <stdio.h>
#include <stdbool.h>
#include "unit.h"
#include "salad/rtree.h"
static int extent_count = 0;
const uint32_t extent_size = 1024 * 8;
static void *
extent_alloc(void *ctx)
{
int *p_extent_count = (int *)ctx;
assert(p_extent_count == &extent_count);
++*p_extent_count;
return malloc(extent_size);
}
static void
extent_free(void *ctx, void *page)
{
int *p_extent_count = (int *)ctx;
assert(p_extent_count == &extent_count);
--*p_extent_count;
free(page);
}
static void
iterator_check()
{
header();
struct rtree tree;
rtree_init(&tree, 2, extent_size,
extent_alloc, extent_free, &extent_count,
RTREE_EUCLID);
/* Filling tree */
const size_t count1 = 10000;
const size_t count2 = 5;
struct rtree_rect rect;
size_t count = 0;
record_t rec;
struct rtree_iterator iterator;
rtree_iterator_init(&iterator);
for (size_t i = 0; i < count1; i++) {
coord_t coord = i * 2 * count2; /* note that filled with even numbers */
for (size_t j = 0; j < count2; j++) {
rtree_set2d(&rect, coord, coord, coord + j, coord + j);
rtree_insert(&tree, &rect, record_t(++count));
}
}
printf("Test tree size: %d\n", (int)rtree_number_of_records(&tree));
/* Test that tree filled ok */
for (size_t i = 0; i < count1; i++) {
for (size_t j = 0; j < count2; j++) {
coord_t coord = i * 2 * count2;
rtree_set2d(&rect, coord, coord, coord + j, coord + j);
if (!rtree_search(&tree, &rect, SOP_BELONGS, &iterator)) {
fail("Integrity check failed (1)", "false");
}
for (size_t k = 0; k <= j; k++) {
if (!rtree_iterator_next(&iterator)) {
fail("Integrity check failed (2)", "false");
}
}
if (rtree_iterator_next(&iterator)) {
fail("Integrity check failed (3)", "true");
}
coord = (i * 2 + 1) * count2;;
rtree_set2d(&rect, coord, coord, coord + j, coord + j);
if (rtree_search(&tree, &rect, SOP_BELONGS, &iterator)) {
fail("Integrity check failed (4)", "true");
}
}
}
/* Print 7 elems closest to coordinate basis */
{
static struct rtree_rect basis;
printf("--> ");
if (!rtree_search(&tree, &basis, SOP_NEIGHBOR, &iterator)) {
fail("Integrity check failed (5)", "false");
}
for (int i = 0; i < 7; i++) {
rec = rtree_iterator_next(&iterator);
if (rec == 0) {
fail("Integrity check failed (6)", "false");
}
printf("%p ", rec);
}
printf("\n");
}
/* Print 7 elems closest to the point [(count1-1)*count2*2, (count1-1)*count2*2] */
{
printf("<-- ");
coord_t coord = (count1 - 1) * count2 * 2;
rtree_set2d(&rect, coord, coord, coord, coord);
if (!rtree_search(&tree, &rect, SOP_NEIGHBOR, &iterator)) {
fail("Integrity check failed (5)", "false");
}
for (int i = 0; i < 7; i++) {
rec = rtree_iterator_next(&iterator);
if (rec == 0) {
fail("Integrity check failed (6)", "false");
}
printf("%p ", rec);
}
printf("\n");
}
/* Test strict belongs */
for (size_t i = 0; i < count1; i++) {
for (size_t j = 0; j < count2; j++) {
coord_t coord = i * 2 * count2;
rtree_set2d(&rect, coord - 0.1, coord - 0.1, coord + j, coord + j);
if (!rtree_search(&tree, &rect, SOP_STRICT_BELONGS, &iterator) && j != 0) {
fail("Integrity check failed (7)", "false");
}
for (size_t k = 0; k < j; k++) {
if (!rtree_iterator_next(&iterator)) {
fail("Integrity check failed (8)", "false");
}
}
if (rtree_iterator_next(&iterator)) {
fail("Integrity check failed (9)", "true");
}
coord = (i * 2 + 1) * count2;
rtree_set2d(&rect, coord, coord, coord + j, coord + j);
if (rtree_search(&tree, &rect, SOP_STRICT_BELONGS, &iterator)) {
fail("Integrity check failed (10)", "true");
}
}
}
/* Test contains */
for (size_t i = 0; i < count1; i++) {
for (size_t j = 0; j < count2; j++) {
coord_t coord = i * 2 * count2;
rtree_set2d(&rect, coord, coord, coord + j, coord + j);
if (!rtree_search(&tree, &rect, SOP_CONTAINS, &iterator)) {
fail("Integrity check failed (11)", "false");
}
for (size_t k = j; k < count2; k++) {
if (!rtree_iterator_next(&iterator)) {
fail("Integrity check failed (12)", "false");
}
}
if (rtree_iterator_next(&iterator)) {
fail("Integrity check failed (13)", "true");
}
coord = (i * 2 + 1) * count2;
rtree_set2d(&rect, coord, coord, coord + j, coord + j);
if (rtree_search(&tree, &rect, SOP_CONTAINS, &iterator)) {
fail("Integrity check failed (14)", "true");
}
}
}
/* Test strict contains */
for (size_t i = 0; i < count1; i++) {
for (size_t j = 0; j < count2; j++) {
coord_t coord = i * 2 * count2;
rtree_set2d(&rect, coord + 0.1, coord + 0.1, coord + j, coord + j);
rtree_rect_normalize(&rect, 2);
if (!rtree_search(&tree, &rect, SOP_STRICT_CONTAINS, &iterator) && j != 0 && j != count2 - 1) {
fail("Integrity check failed (11)", "false");
}
if (j) {
for (size_t k = j; k < count2 - 1; k++) {
if (!rtree_iterator_next(&iterator)) {
fail("Integrity check failed (12)", "false");
}
}
}
if (rtree_iterator_next(&iterator)) {
fail("Integrity check failed (13)", "true");
}
coord = (i * 2 + 1) * count2;
rtree_set2d(&rect, coord, coord, coord + j, coord + j);
if (rtree_search(&tree, &rect, SOP_STRICT_CONTAINS, &iterator)) {
fail("Integrity check failed (14)", "true");
}
}
}
rtree_purge(&tree);
rtree_iterator_destroy(&iterator);
rtree_destroy(&tree);
footer();
}
static void
iterator_invalidate_check()
{
header();
const size_t test_size = 300;
const size_t max_delete_count = 100;
const size_t max_insert_count = 200;
const size_t attempt_count = 100;
struct rtree_rect rect;
/* invalidation during deletion */
srand(0);
for (size_t attempt = 0; attempt < attempt_count; attempt++) {
size_t del_pos = rand() % test_size;
size_t del_cnt = rand() % max_delete_count + 1;
if (del_pos + del_cnt > test_size) {
del_cnt = test_size - del_pos;
}
struct rtree tree;
rtree_init(&tree, 2, extent_size,
extent_alloc, extent_free, &extent_count,
RTREE_EUCLID);
struct rtree_iterator iterators[test_size];
for (size_t i = 0; i < test_size; i++)
rtree_iterator_init(iterators + i);
for (size_t i = 0; i < test_size; i++) {
rtree_set2d(&rect, i, i, i, i);
rtree_insert(&tree, &rect, record_t(i+1));
}
rtree_set2d(&rect, 0, 0, test_size, test_size);
if (!rtree_search(&tree, &rect, SOP_BELONGS, &iterators[0]) ||
!rtree_iterator_next(&iterators[0])) {
fail("Integrity check failed (15)", "false");
}
for (size_t i = 1; i < test_size; i++) {
iterators[i] = iterators[i - 1];
if (!rtree_iterator_next(&iterators[i])) {
fail("Integrity check failed (16)", "false");
}
}
for (size_t i = del_pos; i < del_pos + del_cnt; i++) {
rtree_set2d(&rect, i, i, i, i);
if (!rtree_remove(&tree, &rect, record_t(i+1))) {
fail("Integrity check failed (17)", "false");
}
}
for (size_t i = 0; i < test_size; i++) {
if (rtree_iterator_next(&iterators[i])) {
fail("Iterator was not invalidated (18)", "true");
}
}
for (size_t i = 0; i < test_size; i++)
rtree_iterator_destroy(iterators + i);
rtree_destroy(&tree);
}
/* invalidation during insertion */
srand(0);
for (size_t attempt = 0; attempt < attempt_count; attempt++) {
size_t ins_pos = rand() % test_size;
size_t ins_cnt = rand() % max_insert_count + 1;
struct rtree tree;
rtree_init(&tree, 2, extent_size,
extent_alloc, extent_free, &extent_count,
RTREE_EUCLID);
struct rtree_iterator iterators[test_size];
for (size_t i = 0; i < test_size; i++)
rtree_iterator_init(iterators + i);
for (size_t i = 0; i < test_size; i++) {
rtree_set2d(&rect, i, i, i, i);
rtree_insert(&tree, &rect, record_t(i+1));
}
rtree_set2d(&rect, 0, 0, test_size, test_size);
rtree_search(&tree, &rect, SOP_BELONGS, &iterators[0]);
if (!rtree_iterator_next(&iterators[0])) {
fail("Integrity check failed (19)", "false");
}
for (size_t i = 1; i < test_size; i++) {
iterators[i] = iterators[i - 1];
if (!rtree_iterator_next(&iterators[0])) {
fail("Integrity check failed (20)", "false");
}
}
for (size_t i = ins_pos; i < ins_pos + ins_cnt; i++) {
rtree_set2d(&rect, i, i, i, i);
rtree_insert(&tree, &rect, record_t(test_size + i - ins_pos + 1));
}
for (size_t i = 0; i < test_size; i++) {
if (rtree_iterator_next(&iterators[i])) {
fail("Iterator was not invalidated (22)", "true");
}
}
for (size_t i = 0; i < test_size; i++)
rtree_iterator_destroy(iterators + i);
rtree_destroy(&tree);
}
footer();
}
int
main(void)
{
iterator_check();
iterator_invalidate_check();
if (extent_count != 0) {
fail("memory leak!", "false");
}
}
|