1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
#include "vy_iterators_helper.h"
#include "memory.h"
#include "fiber.h"
#include "uuid/tt_uuid.h"
#include "say.h"
struct tt_uuid INSTANCE_UUID;
struct vy_stmt_env stmt_env;
struct vy_mem_env mem_env;
struct vy_cache_env cache_env;
void
vy_iterator_C_test_init(size_t cache_size)
{
/* Suppress info messages. */
say_set_log_level(S_WARN);
memory_init();
fiber_init(fiber_c_invoke);
tuple_init(NULL);
vy_stmt_env_create(&stmt_env);
vy_cache_env_create(&cache_env, cord_slab_cache());
vy_cache_env_set_quota(&cache_env, cache_size);
size_t mem_size = 64 * 1024 * 1024;
vy_mem_env_create(&mem_env, mem_size);
}
void
vy_iterator_C_test_finish()
{
vy_mem_env_destroy(&mem_env);
vy_cache_env_destroy(&cache_env);
vy_stmt_env_destroy(&stmt_env);
tuple_free();
fiber_free();
memory_free();
}
struct vy_entry
vy_new_simple_stmt(struct tuple_format *format, struct key_def *key_def,
const struct vy_stmt_template *templ)
{
if (templ == NULL)
return vy_entry_none();
/* Calculate binary size. */
int i = 0;
size_t size = 0;
while (templ->fields[i] != vyend) {
fail_if(i > MAX_FIELDS_COUNT);
if (templ->fields[i] >= 0)
size += mp_sizeof_uint(templ->fields[i]);
else
size += mp_sizeof_int(templ->fields[i]);
++i;
}
size += mp_sizeof_array(i);
/* Encode the statement. */
char *buf = (char *) malloc(size);
fail_if(buf == NULL);
char *pos = mp_encode_array(buf, i);
i = 0;
struct tuple *ret = NULL;
while (templ->fields[i] != vyend) {
if (templ->fields[i] >= 0)
pos = mp_encode_uint(pos, templ->fields[i]);
else
pos = mp_encode_int(pos, templ->fields[i]);
++i;
}
/*
* Create the result statement, using one of the formats.
*/
switch (templ->type) {
case IPROTO_INSERT: {
ret = vy_stmt_new_insert(format, buf, pos);
fail_if(ret == NULL);
break;
}
case IPROTO_REPLACE: {
ret = vy_stmt_new_replace(format, buf, pos);
fail_if(ret == NULL);
break;
}
case IPROTO_DELETE: {
struct tuple *tmp = vy_stmt_new_replace(format, buf, pos);
fail_if(tmp == NULL);
ret = vy_stmt_new_surrogate_delete(format, tmp);
fail_if(ret == NULL);
tuple_unref(tmp);
break;
}
case IPROTO_UPSERT: {
/*
* Create the upsert statement without operations.
* Validation of result of UPSERT operations
* applying is not a test for the iterators.
* For the iterators only UPSERT type is
* important.
*/
struct iovec operations[1];
char tmp[32];
char *ops = mp_encode_array(tmp, 1);
ops = mp_encode_array(ops, 3);
ops = mp_encode_str(ops, "+", 1);
ops = mp_encode_uint(ops, templ->upsert_field);
if (templ->upsert_value >= 0)
ops = mp_encode_uint(ops, templ->upsert_value);
else
ops = mp_encode_int(ops, templ->upsert_value);
operations[0].iov_base = tmp;
operations[0].iov_len = ops - tmp;
ret = vy_stmt_new_upsert(format, buf, pos, operations, 1);
fail_if(ret == NULL);
break;
}
case IPROTO_SELECT: {
ret = vy_key_from_msgpack(stmt_env.key_format, buf);
fail_if(ret == NULL);
break;
}
default:
fail_if(true);
}
free(buf);
vy_stmt_set_lsn(ret, templ->lsn);
vy_stmt_set_flags(ret, templ->flags);
struct vy_entry entry;
entry.stmt = ret;
entry.hint = vy_stmt_hint(ret, key_def);
return entry;
}
struct vy_entry
vy_mem_insert_template(struct vy_mem *mem, const struct vy_stmt_template *templ)
{
struct vy_entry entry = vy_new_simple_stmt(mem->format,
mem->cmp_def, templ);
struct tuple *region_stmt = vy_stmt_dup_lsregion(entry.stmt,
&mem->env->allocator, mem->generation);
assert(region_stmt != NULL);
tuple_unref(entry.stmt);
entry.stmt = region_stmt;
if (templ->type == IPROTO_UPSERT)
vy_mem_insert_upsert(mem, entry);
else
vy_mem_insert(mem, entry);
return entry;
}
void
vy_cache_insert_templates_chain(struct vy_cache *cache,
struct tuple_format *format,
const struct vy_stmt_template *chain,
uint length,
const struct vy_stmt_template *key_templ,
enum iterator_type order)
{
struct vy_entry key = vy_new_simple_stmt(format, cache->cmp_def,
key_templ);
struct vy_entry prev_entry = vy_entry_none();
struct vy_entry entry = vy_entry_none();
for (uint i = 0; i < length; ++i) {
entry = vy_new_simple_stmt(format, cache->cmp_def, &chain[i]);
vy_cache_add(cache, entry, prev_entry, key, order);
if (i != 0)
tuple_unref(prev_entry.stmt);
prev_entry = entry;
entry = vy_entry_none();
}
tuple_unref(key.stmt);
if (prev_entry.stmt != NULL)
tuple_unref(prev_entry.stmt);
}
void
vy_cache_on_write_template(struct vy_cache *cache, struct tuple_format *format,
const struct vy_stmt_template *templ)
{
struct vy_entry written = vy_new_simple_stmt(format, cache->cmp_def,
templ);
vy_cache_on_write(cache, written, NULL);
tuple_unref(written.stmt);
}
void
init_read_views_list(struct rlist *rlist, struct vy_read_view *rvs,
const int *vlsns, int count)
{
rlist_create(rlist);
for (int i = 0; i < count; ++i) {
rvs[i].vlsn = vlsns[i];
rlist_add_tail_entry(rlist, &rvs[i], in_read_views);
}
}
struct vy_mem *
create_test_mem(struct key_def *def)
{
/* Create format */
struct tuple_format *format;
format = vy_stmt_format_new(&stmt_env, &def, 1, NULL, 0, 0, NULL);
fail_if(format == NULL);
/* Create mem */
struct vy_mem *mem = vy_mem_new(&mem_env, def, format, 1, 0);
fail_if(mem == NULL);
return mem;
}
void
create_test_cache(uint32_t *fields, uint32_t *types,
int key_cnt, struct vy_cache *cache,
struct key_def **def, struct tuple_format **format)
{
*def = box_key_def_new(fields, types, key_cnt);
assert(*def != NULL);
vy_cache_create(cache, &cache_env, *def, true);
*format = vy_stmt_format_new(&stmt_env, def, 1, NULL, 0, 0, NULL);
tuple_format_ref(*format);
}
void
destroy_test_cache(struct vy_cache *cache, struct key_def *def,
struct tuple_format *format)
{
tuple_format_unref(format);
vy_cache_destroy(cache);
key_def_delete(def);
}
bool
vy_stmt_are_same(struct vy_entry actual,
const struct vy_stmt_template *expected,
struct tuple_format *format, struct key_def *key_def)
{
if (vy_stmt_type(actual.stmt) != expected->type)
return false;
struct vy_entry tmp = vy_new_simple_stmt(format, key_def, expected);
fail_if(tmp.stmt == NULL);
if (actual.hint != tmp.hint) {
tuple_unref(tmp.stmt);
return false;
}
uint32_t a_len, b_len;
const char *a, *b;
if (vy_stmt_type(actual.stmt) == IPROTO_UPSERT) {
a = vy_upsert_data_range(actual.stmt, &a_len);
} else {
a = tuple_data_range(actual.stmt, &a_len);
}
if (vy_stmt_type(tmp.stmt) == IPROTO_UPSERT) {
b = vy_upsert_data_range(tmp.stmt, &b_len);
} else {
b = tuple_data_range(tmp.stmt, &b_len);
}
if (a_len != b_len) {
tuple_unref(tmp.stmt);
return false;
}
if (vy_stmt_lsn(actual.stmt) != expected->lsn) {
tuple_unref(tmp.stmt);
return false;
}
if (vy_stmt_flags(actual.stmt) != expected->flags) {
tuple_unref(tmp.stmt);
return false;
}
bool rc = memcmp(a, b, a_len) == 0;
tuple_unref(tmp.stmt);
return rc;
}
|