1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
|
/* ------------------------------------------------------------------ */
/* Decimal 64-bit format module */
/* ------------------------------------------------------------------ */
/* Copyright (c) IBM Corporation, 2000, 2009. All rights reserved. */
/* */
/* This software is made available under the terms of the */
/* ICU License -- ICU 1.8.1 and later. */
/* */
/* The description and User's Guide ("The decNumber C Library") for */
/* this software is called decNumber.pdf. This document is */
/* available, together with arithmetic and format specifications, */
/* testcases, and Web links, on the General Decimal Arithmetic page. */
/* */
/* Please send comments, suggestions, and corrections to the author: */
/* mfc@uk.ibm.com */
/* Mike Cowlishaw, IBM Fellow */
/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */
/* ------------------------------------------------------------------ */
/* This module comprises the routines for decimal64 format numbers. */
/* Conversions are supplied to and from decNumber and String. */
/* */
/* This is used when decNumber provides operations, either for all */
/* operations or as a proxy between decNumber and decSingle. */
/* */
/* Error handling is the same as decNumber (qv.). */
/* ------------------------------------------------------------------ */
#include <string.h> // [for memset/memcpy]
#include <stdio.h> // [for printf]
#define DECNUMDIGITS 16 // make decNumbers with space for 16
#include "decNumber.h" // base number library
#include "decNumberLocal.h" // decNumber local types, etc.
#include "decimal64.h" // our primary include
/* Utility routines and tables [in decimal64.c]; externs for C++ */
// DPD2BIN and the reverse are renamed to prevent link-time conflict
// if decQuad is also built in the same executable
#define DPD2BIN DPD2BINx
#define BIN2DPD BIN2DPDx
extern const uInt COMBEXP[32], COMBMSD[32];
extern const uShort DPD2BIN[1024];
extern const uShort BIN2DPD[1000];
extern const uByte BIN2CHAR[4001];
extern void decDigitsFromDPD(decNumber *, const uInt *, Int);
extern void decDigitsToDPD(const decNumber *, uInt *, Int);
#if DECTRACE || DECCHECK
void decimal64Show(const decimal64 *); // for debug
extern void decNumberShow(const decNumber *); // ..
#endif
/* Useful macro */
// Clear a structure (e.g., a decNumber)
#define DEC_clear(d) memset(d, 0, sizeof(*d))
/* define and include the tables to use for conversions */
#define DEC_BIN2CHAR 1
#define DEC_DPD2BIN 1
#define DEC_BIN2DPD 1 // used for all sizes
#include "decDPD.h" // lookup tables
/* ------------------------------------------------------------------ */
/* decimal64FromNumber -- convert decNumber to decimal64 */
/* */
/* ds is the target decimal64 */
/* dn is the source number (assumed valid) */
/* set is the context, used only for reporting errors */
/* */
/* The set argument is used only for status reporting and for the */
/* rounding mode (used if the coefficient is more than DECIMAL64_Pmax */
/* digits or an overflow is detected). If the exponent is out of the */
/* valid range then Overflow or Underflow will be raised. */
/* After Underflow a subnormal result is possible. */
/* */
/* DEC_Clamped is set if the number has to be 'folded down' to fit, */
/* by reducing its exponent and multiplying the coefficient by a */
/* power of ten, or if the exponent on a zero had to be clamped. */
/* ------------------------------------------------------------------ */
decimal64 * decimal64FromNumber(decimal64 *d64, const decNumber *dn,
decContext *set) {
uInt status=0; // status accumulator
Int ae; // adjusted exponent
decNumber dw; // work
decContext dc; // ..
uInt comb, exp; // ..
uInt uiwork; // for macros
uInt targar[2]={0, 0}; // target 64-bit
#define targhi targar[1] // name the word with the sign
#define targlo targar[0] // and the other
// If the number has too many digits, or the exponent could be
// out of range then reduce the number under the appropriate
// constraints. This could push the number to Infinity or zero,
// so this check and rounding must be done before generating the
// decimal64]
ae=dn->exponent+dn->digits-1; // [0 if special]
if (dn->digits>DECIMAL64_Pmax // too many digits
|| ae>DECIMAL64_Emax // likely overflow
|| ae<DECIMAL64_Emin) { // likely underflow
decContextDefault(&dc, DEC_INIT_DECIMAL64); // [no traps]
dc.round=set->round; // use supplied rounding
decNumberPlus(&dw, dn, &dc); // (round and check)
// [this changes -0 to 0, so enforce the sign...]
dw.bits|=dn->bits&DECNEG;
status=dc.status; // save status
dn=&dw; // use the work number
} // maybe out of range
if (dn->bits&DECSPECIAL) { // a special value
if (dn->bits&DECINF) targhi=DECIMAL_Inf<<24;
else { // sNaN or qNaN
if ((*dn->lsu!=0 || dn->digits>1) // non-zero coefficient
&& (dn->digits<DECIMAL64_Pmax)) { // coefficient fits
decDigitsToDPD(dn, targar, 0);
}
if (dn->bits&DECNAN) targhi|=DECIMAL_NaN<<24;
else targhi|=DECIMAL_sNaN<<24;
} // a NaN
} // special
else { // is finite
if (decNumberIsZero(dn)) { // is a zero
// set and clamp exponent
if (dn->exponent<-DECIMAL64_Bias) {
exp=0; // low clamp
status|=DEC_Clamped;
}
else {
exp=dn->exponent+DECIMAL64_Bias; // bias exponent
if (exp>DECIMAL64_Ehigh) { // top clamp
exp=DECIMAL64_Ehigh;
status|=DEC_Clamped;
}
}
comb=(exp>>5) & 0x18; // msd=0, exp top 2 bits ..
}
else { // non-zero finite number
uInt msd; // work
Int pad=0; // coefficient pad digits
// the dn is known to fit, but it may need to be padded
exp=(uInt)(dn->exponent+DECIMAL64_Bias); // bias exponent
if (exp>DECIMAL64_Ehigh) { // fold-down case
pad=exp-DECIMAL64_Ehigh;
exp=DECIMAL64_Ehigh; // [to maximum]
status|=DEC_Clamped;
}
// fastpath common case
if (DECDPUN==3 && pad==0) {
uInt dpd[6]={0,0,0,0,0,0};
uInt i;
Int d=dn->digits;
for (i=0; d>0; i++, d-=3) dpd[i]=BIN2DPD[dn->lsu[i]];
targlo =dpd[0];
targlo|=dpd[1]<<10;
targlo|=dpd[2]<<20;
if (dn->digits>6) {
targlo|=dpd[3]<<30;
targhi =dpd[3]>>2;
targhi|=dpd[4]<<8;
}
msd=dpd[5]; // [did not really need conversion]
}
else { // general case
decDigitsToDPD(dn, targar, pad);
// save and clear the top digit
msd=targhi>>18;
targhi&=0x0003ffff;
}
// create the combination field
if (msd>=8) comb=0x18 | ((exp>>7) & 0x06) | (msd & 0x01);
else comb=((exp>>5) & 0x18) | msd;
}
targhi|=comb<<26; // add combination field ..
targhi|=(exp&0xff)<<18; // .. and exponent continuation
} // finite
if (dn->bits&DECNEG) targhi|=0x80000000; // add sign bit
// now write to storage; this is now always endian
if (DECLITEND) {
// lo int then hi
UBFROMUI(d64->bytes, targar[0]);
UBFROMUI(d64->bytes+4, targar[1]);
}
else {
// hi int then lo
UBFROMUI(d64->bytes, targar[1]);
UBFROMUI(d64->bytes+4, targar[0]);
}
if (status!=0) decContextSetStatus(set, status); // pass on status
// decimal64Show(d64);
return d64;
} // decimal64FromNumber
/* ------------------------------------------------------------------ */
/* decimal64ToNumber -- convert decimal64 to decNumber */
/* d64 is the source decimal64 */
/* dn is the target number, with appropriate space */
/* No error is possible. */
/* ------------------------------------------------------------------ */
decNumber * decimal64ToNumber(const decimal64 *d64, decNumber *dn) {
uInt msd; // coefficient MSD
uInt exp; // exponent top two bits
uInt comb; // combination field
Int need; // work
uInt uiwork; // for macros
uInt sourar[2]; // source 64-bit
#define sourhi sourar[1] // name the word with the sign
#define sourlo sourar[0] // and the lower word
// load source from storage; this is endian
if (DECLITEND) {
sourlo=UBTOUI(d64->bytes ); // directly load the low int
sourhi=UBTOUI(d64->bytes+4); // then the high int
}
else {
sourhi=UBTOUI(d64->bytes ); // directly load the high int
sourlo=UBTOUI(d64->bytes+4); // then the low int
}
comb=(sourhi>>26)&0x1f; // combination field
decNumberZero(dn); // clean number
if (sourhi&0x80000000) dn->bits=DECNEG; // set sign if negative
msd=COMBMSD[comb]; // decode the combination field
exp=COMBEXP[comb]; // ..
if (exp==3) { // is a special
if (msd==0) {
dn->bits|=DECINF;
return dn; // no coefficient needed
}
else if (sourhi&0x02000000) dn->bits|=DECSNAN;
else dn->bits|=DECNAN;
msd=0; // no top digit
}
else { // is a finite number
dn->exponent=(exp<<8)+((sourhi>>18)&0xff)-DECIMAL64_Bias; // unbiased
}
// get the coefficient
sourhi&=0x0003ffff; // clean coefficient continuation
if (msd) { // non-zero msd
sourhi|=msd<<18; // prefix to coefficient
need=6; // process 6 declets
}
else { // msd=0
if (!sourhi) { // top word 0
if (!sourlo) return dn; // easy: coefficient is 0
need=3; // process at least 3 declets
if (sourlo&0xc0000000) need++; // process 4 declets
// [could reduce some more, here]
}
else { // some bits in top word, msd=0
need=4; // process at least 4 declets
if (sourhi&0x0003ff00) need++; // top declet!=0, process 5
}
} //msd=0
decDigitsFromDPD(dn, sourar, need); // process declets
return dn;
} // decimal64ToNumber
/* ------------------------------------------------------------------ */
/* to-scientific-string -- conversion to numeric string */
/* to-engineering-string -- conversion to numeric string */
/* */
/* decimal64ToString(d64, string); */
/* decimal64ToEngString(d64, string); */
/* */
/* d64 is the decimal64 format number to convert */
/* string is the string where the result will be laid out */
/* */
/* string must be at least 24 characters */
/* */
/* No error is possible, and no status can be set. */
/* ------------------------------------------------------------------ */
char * decimal64ToEngString(const decimal64 *d64, char *string){
decNumber dn; // work
decimal64ToNumber(d64, &dn);
decNumberToEngString(&dn, string);
return string;
} // decimal64ToEngString
char * decimal64ToString(const decimal64 *d64, char *string){
uInt msd; // coefficient MSD
Int exp; // exponent top two bits or full
uInt comb; // combination field
char *cstart; // coefficient start
char *c; // output pointer in string
const uByte *u; // work
char *s, *t; // .. (source, target)
Int dpd; // ..
Int pre, e; // ..
uInt uiwork; // for macros
uInt sourar[2]; // source 64-bit
#define sourhi sourar[1] // name the word with the sign
#define sourlo sourar[0] // and the lower word
// load source from storage; this is endian
if (DECLITEND) {
sourlo=UBTOUI(d64->bytes ); // directly load the low int
sourhi=UBTOUI(d64->bytes+4); // then the high int
}
else {
sourhi=UBTOUI(d64->bytes ); // directly load the high int
sourlo=UBTOUI(d64->bytes+4); // then the low int
}
c=string; // where result will go
if (((Int)sourhi)<0) *c++='-'; // handle sign
comb=(sourhi>>26)&0x1f; // combination field
msd=COMBMSD[comb]; // decode the combination field
exp=COMBEXP[comb]; // ..
if (exp==3) {
if (msd==0) { // infinity
strcpy(c, "Inf");
strcpy(c+3, "inity");
return string; // easy
}
if (sourhi&0x02000000) *c++='s'; // sNaN
strcpy(c, "NaN"); // complete word
c+=3; // step past
if (sourlo==0 && (sourhi&0x0003ffff)==0) return string; // zero payload
// otherwise drop through to add integer; set correct exp
exp=0; msd=0; // setup for following code
}
else exp=(exp<<8)+((sourhi>>18)&0xff)-DECIMAL64_Bias;
// convert 16 digits of significand to characters
cstart=c; // save start of coefficient
if (msd) *c++='0'+(char)msd; // non-zero most significant digit
// Now decode the declets. After extracting each one, it is
// decoded to binary and then to a 4-char sequence by table lookup;
// the 4-chars are a 1-char length (significant digits, except 000
// has length 0). This allows us to left-align the first declet
// with non-zero content, then remaining ones are full 3-char
// length. We use fixed-length memcpys because variable-length
// causes a subroutine call in GCC. (These are length 4 for speed
// and are safe because the array has an extra terminator byte.)
#define dpd2char u=&BIN2CHAR[DPD2BIN[dpd]*4]; \
if (c!=cstart) {memcpy(c, u+1, 4); c+=3;} \
else if (*u) {memcpy(c, u+4-*u, 4); c+=*u;}
dpd=(sourhi>>8)&0x3ff; // declet 1
dpd2char;
dpd=((sourhi&0xff)<<2) | (sourlo>>30); // declet 2
dpd2char;
dpd=(sourlo>>20)&0x3ff; // declet 3
dpd2char;
dpd=(sourlo>>10)&0x3ff; // declet 4
dpd2char;
dpd=(sourlo)&0x3ff; // declet 5
dpd2char;
if (c==cstart) *c++='0'; // all zeros -- make 0
if (exp==0) { // integer or NaN case -- easy
*c='\0'; // terminate
return string;
}
/* non-0 exponent */
e=0; // assume no E
pre=c-cstart+exp;
// [here, pre-exp is the digits count (==1 for zero)]
if (exp>0 || pre<-5) { // need exponential form
e=pre-1; // calculate E value
pre=1; // assume one digit before '.'
} // exponential form
/* modify the coefficient, adding 0s, '.', and E+nn as needed */
s=c-1; // source (LSD)
if (pre>0) { // ddd.ddd (plain), perhaps with E
char *dotat=cstart+pre;
if (dotat<c) { // if embedded dot needed...
t=c; // target
for (; s>=dotat; s--, t--) *t=*s; // open the gap; leave t at gap
*t='.'; // insert the dot
c++; // length increased by one
}
// finally add the E-part, if needed; it will never be 0, and has
// a maximum length of 3 digits
if (e!=0) {
*c++='E'; // starts with E
*c++='+'; // assume positive
if (e<0) {
*(c-1)='-'; // oops, need '-'
e=-e; // uInt, please
}
u=&BIN2CHAR[e*4]; // -> length byte
memcpy(c, u+4-*u, 4); // copy fixed 4 characters [is safe]
c+=*u; // bump pointer appropriately
}
*c='\0'; // add terminator
//printf("res %s\n", string);
return string;
} // pre>0
/* -5<=pre<=0: here for plain 0.ddd or 0.000ddd forms (can never have E) */
t=c+1-pre;
*(t+1)='\0'; // can add terminator now
for (; s>=cstart; s--, t--) *t=*s; // shift whole coefficient right
c=cstart;
*c++='0'; // always starts with 0.
*c++='.';
for (; pre<0; pre++) *c++='0'; // add any 0's after '.'
//printf("res %s\n", string);
return string;
} // decimal64ToString
/* ------------------------------------------------------------------ */
/* to-number -- conversion from numeric string */
/* */
/* decimal64FromString(result, string, set); */
/* */
/* result is the decimal64 format number which gets the result of */
/* the conversion */
/* *string is the character string which should contain a valid */
/* number (which may be a special value) */
/* set is the context */
/* */
/* The context is supplied to this routine is used for error handling */
/* (setting of status and traps) and for the rounding mode, only. */
/* If an error occurs, the result will be a valid decimal64 NaN. */
/* ------------------------------------------------------------------ */
decimal64 * decimal64FromString(decimal64 *result, const char *string,
decContext *set) {
decContext dc; // work
decNumber dn; // ..
decContextDefault(&dc, DEC_INIT_DECIMAL64); // no traps, please
dc.round=set->round; // use supplied rounding
decNumberFromString(&dn, string, &dc); // will round if needed
decimal64FromNumber(result, &dn, &dc);
if (dc.status!=0) { // something happened
decContextSetStatus(set, dc.status); // .. pass it on
}
return result;
} // decimal64FromString
/* ------------------------------------------------------------------ */
/* decimal64IsCanonical -- test whether encoding is canonical */
/* d64 is the source decimal64 */
/* returns 1 if the encoding of d64 is canonical, 0 otherwise */
/* No error is possible. */
/* ------------------------------------------------------------------ */
uInt decimal64IsCanonical(const decimal64 *d64) {
decNumber dn; // work
decimal64 canon; // ..
decContext dc; // ..
decContextDefault(&dc, DEC_INIT_DECIMAL64);
decimal64ToNumber(d64, &dn);
decimal64FromNumber(&canon, &dn, &dc);// canon will now be canonical
return memcmp(d64, &canon, DECIMAL64_Bytes)==0;
} // decimal64IsCanonical
/* ------------------------------------------------------------------ */
/* decimal64Canonical -- copy an encoding, ensuring it is canonical */
/* d64 is the source decimal64 */
/* result is the target (may be the same decimal64) */
/* returns result */
/* No error is possible. */
/* ------------------------------------------------------------------ */
decimal64 * decimal64Canonical(decimal64 *result, const decimal64 *d64) {
decNumber dn; // work
decContext dc; // ..
decContextDefault(&dc, DEC_INIT_DECIMAL64);
decimal64ToNumber(d64, &dn);
decimal64FromNumber(result, &dn, &dc);// result will now be canonical
return result;
} // decimal64Canonical
#if DECTRACE || DECCHECK
/* Macros for accessing decimal64 fields. These assume the
argument is a reference (pointer) to the decimal64 structure,
and the decimal64 is in network byte order (big-endian) */
// Get sign
#define decimal64Sign(d) ((unsigned)(d)->bytes[0]>>7)
// Get combination field
#define decimal64Comb(d) (((d)->bytes[0] & 0x7c)>>2)
// Get exponent continuation [does not remove bias]
#define decimal64ExpCon(d) ((((d)->bytes[0] & 0x03)<<6) \
| ((unsigned)(d)->bytes[1]>>2))
// Set sign [this assumes sign previously 0]
#define decimal64SetSign(d, b) { \
(d)->bytes[0]|=((unsigned)(b)<<7);}
// Set exponent continuation [does not apply bias]
// This assumes range has been checked and exponent previously 0;
// type of exponent must be unsigned
#define decimal64SetExpCon(d, e) { \
(d)->bytes[0]|=(uByte)((e)>>6); \
(d)->bytes[1]|=(uByte)(((e)&0x3F)<<2);}
/* ------------------------------------------------------------------ */
/* decimal64Show -- display a decimal64 in hexadecimal [debug aid] */
/* d64 -- the number to show */
/* ------------------------------------------------------------------ */
// Also shows sign/cob/expconfields extracted
void decimal64Show(const decimal64 *d64) {
char buf[DECIMAL64_Bytes*2+1];
Int i, j=0;
if (DECLITEND) {
for (i=0; i<DECIMAL64_Bytes; i++, j+=2) {
sprintf(&buf[j], "%02x", d64->bytes[7-i]);
}
printf(" D64> %s [S:%d Cb:%02x Ec:%02x] LittleEndian\n", buf,
d64->bytes[7]>>7, (d64->bytes[7]>>2)&0x1f,
((d64->bytes[7]&0x3)<<6)| (d64->bytes[6]>>2));
}
else { // big-endian
for (i=0; i<DECIMAL64_Bytes; i++, j+=2) {
sprintf(&buf[j], "%02x", d64->bytes[i]);
}
printf(" D64> %s [S:%d Cb:%02x Ec:%02x] BigEndian\n", buf,
decimal64Sign(d64), decimal64Comb(d64), decimal64ExpCon(d64));
}
} // decimal64Show
#endif
/* ================================================================== */
/* Shared utility routines and tables */
/* ================================================================== */
// define and include the conversion tables to use for shared code
#if DECDPUN==3
#define DEC_DPD2BIN 1
#else
#define DEC_DPD2BCD 1
#endif
#include "decDPD.h" // lookup tables
// The maximum number of decNumberUnits needed for a working copy of
// the units array is the ceiling of digits/DECDPUN, where digits is
// the maximum number of digits in any of the formats for which this
// is used. decimal128.h must not be included in this module, so, as
// a very special case, that number is defined as a literal here.
#define DECMAX754 34
#define DECMAXUNITS ((DECMAX754+DECDPUN-1)/DECDPUN)
/* ------------------------------------------------------------------ */
/* Combination field lookup tables (uInts to save measurable work) */
/* */
/* COMBEXP - 2-bit most-significant-bits of exponent */
/* [11 if an Infinity or NaN] */
/* COMBMSD - 4-bit most-significant-digit */
/* [0=Infinity, 1=NaN if COMBEXP=11] */
/* */
/* Both are indexed by the 5-bit combination field (0-31) */
/* ------------------------------------------------------------------ */
const uInt COMBEXP[32]={0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2,
0, 0, 1, 1, 2, 2, 3, 3};
const uInt COMBMSD[32]={0, 1, 2, 3, 4, 5, 6, 7,
0, 1, 2, 3, 4, 5, 6, 7,
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 8, 9, 8, 9, 0, 1};
/* ------------------------------------------------------------------ */
/* decDigitsToDPD -- pack coefficient into DPD form */
/* */
/* dn is the source number (assumed valid, max DECMAX754 digits) */
/* targ is 1, 2, or 4-element uInt array, which the caller must */
/* have cleared to zeros */
/* shift is the number of 0 digits to add on the right (normally 0) */
/* */
/* The coefficient must be known small enough to fit. The full */
/* coefficient is copied, including the leading 'odd' digit. This */
/* digit is retrieved and packed into the combination field by the */
/* caller. */
/* */
/* The target uInts are altered only as necessary to receive the */
/* digits of the decNumber. When more than one uInt is needed, they */
/* are filled from left to right (that is, the uInt at offset 0 will */
/* end up with the least-significant digits). */
/* */
/* shift is used for 'fold-down' padding. */
/* */
/* No error is possible. */
/* ------------------------------------------------------------------ */
#if DECDPUN<=4
// Constant multipliers for divide-by-power-of five using reciprocal
// multiply, after removing powers of 2 by shifting, and final shift
// of 17 [we only need up to **4]
static const uInt multies[]={131073, 26215, 5243, 1049, 210};
// QUOT10 -- macro to return the quotient of unit u divided by 10**n
#define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17)
#endif
void decDigitsToDPD(const decNumber *dn, uInt *targ, Int shift) {
Int cut; // work
Int n; // output bunch counter
Int digits=dn->digits; // digit countdown
uInt dpd; // densely packed decimal value
uInt bin; // binary value 0-999
uInt *uout=targ; // -> current output uInt
uInt uoff=0; // -> current output offset [from right]
const Unit *inu=dn->lsu; // -> current input unit
Unit uar[DECMAXUNITS]; // working copy of units, iff shifted
#if DECDPUN!=3 // not fast path
Unit in; // current unit
#endif
if (shift!=0) { // shift towards most significant required
// shift the units array to the left by pad digits and copy
// [this code is a special case of decShiftToMost, which could
// be used instead if exposed and the array were copied first]
const Unit *source; // ..
Unit *target, *first; // ..
uInt next=0; // work
source=dn->lsu+D2U(digits)-1; // where msu comes from
target=uar+D2U(digits)-1+D2U(shift);// where upper part of first cut goes
cut=DECDPUN-MSUDIGITS(shift); // where to slice
if (cut==0) { // unit-boundary case
for (; source>=dn->lsu; source--, target--) *target=*source;
}
else {
first=uar+D2U(digits+shift)-1; // where msu will end up
for (; source>=dn->lsu; source--, target--) {
// split the source Unit and accumulate remainder for next
#if DECDPUN<=4
uInt quot=QUOT10(*source, cut);
uInt rem=*source-quot*DECPOWERS[cut];
next+=quot;
#else
uInt rem=*source%DECPOWERS[cut];
next+=*source/DECPOWERS[cut];
#endif
if (target<=first) *target=(Unit)next; // write to target iff valid
next=rem*DECPOWERS[DECDPUN-cut]; // save remainder for next Unit
}
} // shift-move
// propagate remainder to one below and clear the rest
for (; target>=uar; target--) {
*target=(Unit)next;
next=0;
}
digits+=shift; // add count (shift) of zeros added
inu=uar; // use units in working array
}
/* now densely pack the coefficient into DPD declets */
#if DECDPUN!=3 // not fast path
in=*inu; // current unit
cut=0; // at lowest digit
bin=0; // [keep compiler quiet]
#endif
for(n=0; digits>0; n++) { // each output bunch
#if DECDPUN==3 // fast path, 3-at-a-time
bin=*inu; // 3 digits ready for convert
digits-=3; // [may go negative]
inu++; // may need another
#else // must collect digit-by-digit
Unit dig; // current digit
Int j; // digit-in-declet count
for (j=0; j<3; j++) {
#if DECDPUN<=4
Unit temp=(Unit)((uInt)(in*6554)>>16);
dig=(Unit)(in-X10(temp));
in=temp;
#else
dig=in%10;
in=in/10;
#endif
if (j==0) bin=dig;
else if (j==1) bin+=X10(dig);
else /* j==2 */ bin+=X100(dig);
digits--;
if (digits==0) break; // [also protects *inu below]
cut++;
if (cut==DECDPUN) {inu++; in=*inu; cut=0;}
}
#endif
// here there are 3 digits in bin, or have used all input digits
dpd=BIN2DPD[bin];
// write declet to uInt array
*uout|=dpd<<uoff;
uoff+=10;
if (uoff<32) continue; // no uInt boundary cross
uout++;
uoff-=32;
*uout|=dpd>>(10-uoff); // collect top bits
} // n declets
return;
} // decDigitsToDPD
/* ------------------------------------------------------------------ */
/* decDigitsFromDPD -- unpack a format's coefficient */
/* */
/* dn is the target number, with 7, 16, or 34-digit space. */
/* sour is a 1, 2, or 4-element uInt array containing only declets */
/* declets is the number of (right-aligned) declets in sour to */
/* be processed. This may be 1 more than the obvious number in */
/* a format, as any top digit is prefixed to the coefficient */
/* continuation field. It also may be as small as 1, as the */
/* caller may pre-process leading zero declets. */
/* */
/* When doing the 'extra declet' case care is taken to avoid writing */
/* extra digits when there are leading zeros, as these could overflow */
/* the units array when DECDPUN is not 3. */
/* */
/* The target uInts are used only as necessary to process declets */
/* declets into the decNumber. When more than one uInt is needed, */
/* they are used from left to right (that is, the uInt at offset 0 */
/* provides the least-significant digits). */
/* */
/* dn->digits is set, but not the sign or exponent. */
/* No error is possible [the redundant 888 codes are allowed]. */
/* ------------------------------------------------------------------ */
void decDigitsFromDPD(decNumber *dn, const uInt *sour, Int declets) {
uInt dpd; // collector for 10 bits
Int n; // counter
Unit *uout=dn->lsu; // -> current output unit
Unit *last=uout; // will be unit containing msd
const uInt *uin=sour; // -> current input uInt
uInt uoff=0; // -> current input offset [from right]
#if DECDPUN!=3
uInt bcd; // BCD result
uInt nibble; // work
Unit out=0; // accumulator
Int cut=0; // power of ten in current unit
#endif
#if DECDPUN>4
uInt const *pow; // work
#endif
// Expand the densely-packed integer, right to left
for (n=declets-1; n>=0; n--) { // count down declets of 10 bits
dpd=*uin>>uoff;
uoff+=10;
if (uoff>32) { // crossed uInt boundary
uin++;
uoff-=32; // [if using this code for wider, check this]
dpd|=*uin<<(10-uoff); // get waiting bits
}
dpd&=0x3ff; // clear uninteresting bits
#if DECDPUN==3
if (dpd==0) *uout=0;
else {
*uout=DPD2BIN[dpd]; // convert 10 bits to binary 0-999
last=uout; // record most significant unit
}
uout++;
} // n
#else // DECDPUN!=3
if (dpd==0) { // fastpath [e.g., leading zeros]
// write out three 0 digits (nibbles); out may have digit(s)
cut++;
if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
if (n==0) break; // [as below, works even if MSD=0]
cut++;
if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
cut++;
if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
continue;
}
bcd=DPD2BCD[dpd]; // convert 10 bits to 12 bits BCD
// now accumulate the 3 BCD nibbles into units
nibble=bcd & 0x00f;
if (nibble) out=(Unit)(out+nibble*DECPOWERS[cut]);
cut++;
if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
bcd>>=4;
// if this is the last declet and the remaining nibbles in bcd
// are 00 then process no more nibbles, because this could be
// the 'odd' MSD declet and writing any more Units would then
// overflow the unit array
if (n==0 && !bcd) break;
nibble=bcd & 0x00f;
if (nibble) out=(Unit)(out+nibble*DECPOWERS[cut]);
cut++;
if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
bcd>>=4;
nibble=bcd & 0x00f;
if (nibble) out=(Unit)(out+nibble*DECPOWERS[cut]);
cut++;
if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
} // n
if (cut!=0) { // some more left over
*uout=out; // write out final unit
if (out) last=uout; // and note if non-zero
}
#endif
// here, last points to the most significant unit with digits;
// inspect it to get the final digits count -- this is essentially
// the same code as decGetDigits in decNumber.c
dn->digits=(last-dn->lsu)*DECDPUN+1; // floor of digits, plus
// must be at least 1 digit
#if DECDPUN>1
if (*last<10) return; // common odd digit or 0
dn->digits++; // must be 2 at least
#if DECDPUN>2
if (*last<100) return; // 10-99
dn->digits++; // must be 3 at least
#if DECDPUN>3
if (*last<1000) return; // 100-999
dn->digits++; // must be 4 at least
#if DECDPUN>4
for (pow=&DECPOWERS[4]; *last>=*pow; pow++) dn->digits++;
#endif
#endif
#endif
#endif
return;
} //decDigitsFromDPD
|