File: ldm.c

package info (click to toggle)
tarantool 2.6.0-1.4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 85,412 kB
  • sloc: ansic: 513,775; cpp: 69,493; sh: 25,650; python: 19,190; perl: 14,973; makefile: 4,178; yacc: 1,329; sql: 1,074; pascal: 620; ruby: 190; awk: 18; lisp: 7
file content (856 lines) | stat: -rw-r--r-- 25,872 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
#include <limits.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ldm.h"

#define LDM_HASHTABLESIZE (1 << (LDM_MEMORY_USAGE))
#define LDM_HASHTABLESIZE_U32 ((LDM_HASHTABLESIZE) >> 2)
#define LDM_HASHTABLESIZE_U64 ((LDM_HASHTABLESIZE) >> 3)

#if USE_CHECKSUM
  #define LDM_HASH_ENTRY_SIZE_LOG 3
#else
  #define LDM_HASH_ENTRY_SIZE_LOG 2
#endif

// Entries are inserted into the table HASH_ONLY_EVERY + 1 times "on average".
#ifndef HASH_ONLY_EVERY_LOG
  #define HASH_ONLY_EVERY_LOG (LDM_WINDOW_SIZE_LOG-((LDM_MEMORY_USAGE)-(LDM_HASH_ENTRY_SIZE_LOG)))
#endif

#define HASH_ONLY_EVERY ((1 << (HASH_ONLY_EVERY_LOG)) - 1)

#define HASH_BUCKET_SIZE (1 << (HASH_BUCKET_SIZE_LOG))
#define NUM_HASH_BUCKETS_LOG ((LDM_MEMORY_USAGE)-(LDM_HASH_ENTRY_SIZE_LOG)-(HASH_BUCKET_SIZE_LOG))

#define HASH_CHAR_OFFSET 10

// Take the first match in the hash bucket only.
//#define ZSTD_SKIP

static const U64 prime8bytes = 11400714785074694791ULL;

// Type of the small hash used to index into the hash table.
typedef U32 hash_t;

#if USE_CHECKSUM
typedef struct LDM_hashEntry {
  U32 offset;
  U32 checksum;
} LDM_hashEntry;
#else
typedef struct LDM_hashEntry {
  U32 offset;
} LDM_hashEntry;
#endif

struct LDM_compressStats {
  U32 windowSizeLog, hashTableSizeLog;
  U32 numMatches;
  U64 totalMatchLength;
  U64 totalLiteralLength;
  U64 totalOffset;

  U32 matchLengthHistogram[32];

  U32 minOffset, maxOffset;
  U32 offsetHistogram[32];
};

typedef struct LDM_hashTable LDM_hashTable;

struct LDM_CCtx {
  size_t isize;             /* Input size */
  size_t maxOSize;          /* Maximum output size */

  const BYTE *ibase;        /* Base of input */
  const BYTE *ip;           /* Current input position */
  const BYTE *iend;         /* End of input */

  // Maximum input position such that hashing at the position does not exceed
  // end of input.
  const BYTE *ihashLimit;

  // Maximum input position such that finding a match of at least the minimum
  // match length does not exceed end of input.
  const BYTE *imatchLimit;

  const BYTE *obase;        /* Base of output */
  BYTE *op;                 /* Output */

  const BYTE *anchor;       /* Anchor to start of current (match) block */

  LDM_compressStats stats;            /* Compression statistics */

  LDM_hashTable *hashTable;

  const BYTE *lastPosHashed;          /* Last position hashed */
  U64 lastHash;

  const BYTE *nextIp;                 // TODO: this is redundant (ip + step)
  const BYTE *nextPosHashed;
  U64 nextHash;

  unsigned step;                      // ip step, should be 1.

  const BYTE *lagIp;
  U64 lagHash;
};

struct LDM_hashTable {
  U32 numBuckets;          // The number of buckets.
  U32 numEntries;          // numBuckets * HASH_BUCKET_SIZE.

  LDM_hashEntry *entries;
  BYTE *bucketOffsets;     // A pointer (per bucket) to the next insert position.
};

static void HASH_destroyTable(LDM_hashTable *table) {
  free(table->entries);
  free(table->bucketOffsets);
  free(table);
}

/**
 * Create a hash table that can contain size elements.
 * The number of buckets is determined by size >> HASH_BUCKET_SIZE_LOG.
 *
 * Returns NULL if table creation failed.
 */
static LDM_hashTable *HASH_createTable(U32 size) {
  LDM_hashTable *table = malloc(sizeof(LDM_hashTable));
  if (!table) return NULL;

  table->numBuckets = size >> HASH_BUCKET_SIZE_LOG;
  table->numEntries = size;
  table->entries = calloc(size, sizeof(LDM_hashEntry));
  table->bucketOffsets = calloc(size >> HASH_BUCKET_SIZE_LOG, sizeof(BYTE));

  if (!table->entries || !table->bucketOffsets) {
    HASH_destroyTable(table);
    return NULL;
  }

  return table;
}

static LDM_hashEntry *getBucket(const LDM_hashTable *table, const hash_t hash) {
  return table->entries + (hash << HASH_BUCKET_SIZE_LOG);
}

static unsigned ZSTD_NbCommonBytes (size_t val) {
  if (MEM_isLittleEndian()) {
    if (MEM_64bits()) {
#    if defined(_MSC_VER) && defined(_WIN64)
      unsigned long r = 0;
      _BitScanForward64( &r, (U64)val );
      return (unsigned)(r>>3);
#     elif defined(__GNUC__) && (__GNUC__ >= 3)
      return (__builtin_ctzll((U64)val) >> 3);
#     else
      static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2,
                                               0, 3, 1, 3, 1, 4, 2, 7,
                                               0, 2, 3, 6, 1, 5, 3, 5,
                                               1, 3, 4, 4, 2, 5, 6, 7,
                                               7, 0, 1, 2, 3, 3, 4, 6,
                                               2, 6, 5, 5, 3, 4, 5, 6,
                                               7, 1, 2, 4, 6, 4, 4, 5,
                                               7, 2, 6, 5, 7, 6, 7, 7 };
      return DeBruijnBytePos[
          ((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
#     endif
  } else { /* 32 bits */
#     if defined(_MSC_VER)
      unsigned long r=0;
      _BitScanForward( &r, (U32)val );
      return (unsigned)(r>>3);
#     elif defined(__GNUC__) && (__GNUC__ >= 3)
      return (__builtin_ctz((U32)val) >> 3);
#     else
      static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0,
                                               3, 2, 2, 1, 3, 2, 0, 1,
                                               3, 3, 1, 2, 2, 2, 2, 0,
                                               3, 1, 2, 0, 1, 0, 1, 1 };
      return DeBruijnBytePos[
          ((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
#     endif
    }
  } else {  /* Big Endian CPU */
    if (MEM_64bits()) {
#     if defined(_MSC_VER) && defined(_WIN64)
      unsigned long r = 0;
      _BitScanReverse64( &r, val );
      return (unsigned)(r>>3);
#     elif defined(__GNUC__) && (__GNUC__ >= 3)
      return (__builtin_clzll(val) >> 3);
#     else
      unsigned r;
      /* calculate this way due to compiler complaining in 32-bits mode */
      const unsigned n32 = sizeof(size_t)*4;
      if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
      if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
      r += (!val);
      return r;
#       endif
    } else { /* 32 bits */
#     if defined(_MSC_VER)
      unsigned long r = 0;
      _BitScanReverse( &r, (unsigned long)val );
      return (unsigned)(r>>3);
#     elif defined(__GNUC__) && (__GNUC__ >= 3)
      return (__builtin_clz((U32)val) >> 3);
#     else
      unsigned r;
      if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
      r += (!val);
      return r;
#     endif
    }
  }
}

// From lib/compress/zstd_compress.c
static size_t ZSTD_count(const BYTE *pIn, const BYTE *pMatch,
                         const BYTE *const pInLimit) {
    const BYTE * const pStart = pIn;
    const BYTE * const pInLoopLimit = pInLimit - (sizeof(size_t)-1);

    while (pIn < pInLoopLimit) {
        size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
        if (!diff) {
          pIn += sizeof(size_t);
          pMatch += sizeof(size_t);
          continue;
        }
        pIn += ZSTD_NbCommonBytes(diff);
        return (size_t)(pIn - pStart);
    }

    if (MEM_64bits()) {
      if ((pIn < (pInLimit - 3)) && (MEM_read32(pMatch) == MEM_read32(pIn))) {
        pIn += 4;
        pMatch += 4;
      }
    }
    if ((pIn < (pInLimit - 1)) && (MEM_read16(pMatch) == MEM_read16(pIn))) {
      pIn += 2;
      pMatch += 2;
    }
    if ((pIn < pInLimit) && (*pMatch == *pIn)) {
      pIn++;
    }
    return (size_t)(pIn - pStart);
}

/**
 * Count number of bytes that match backwards before pIn and pMatch.
 *
 * We count only bytes where pMatch > pBase and pIn > pAnchor.
 */
static size_t countBackwardsMatch(const BYTE *pIn, const BYTE *pAnchor,
                                  const BYTE *pMatch, const BYTE *pBase) {
  size_t matchLength = 0;
  while (pIn > pAnchor && pMatch > pBase && pIn[-1] == pMatch[-1]) {
    pIn--;
    pMatch--;
    matchLength++;
  }
  return matchLength;
}

/**
 * Returns a pointer to the entry in the hash table matching the hash and
 * checksum with the "longest match length" as defined below. The forward and
 * backward match lengths are written to *pForwardMatchLength and
 * *pBackwardMatchLength.
 *
 * The match length is defined based on cctx->ip and the entry's offset.
 * The forward match is computed from cctx->ip and entry->offset + cctx->ibase.
 * The backward match is computed backwards from cctx->ip and
 * cctx->ibase only if the forward match is longer than LDM_MIN_MATCH_LENGTH.
 */
static LDM_hashEntry *HASH_getBestEntry(const LDM_CCtx *cctx,
                                        const hash_t hash,
                                        const U32 checksum,
                                        U64 *pForwardMatchLength,
                                        U64 *pBackwardMatchLength) {
  LDM_hashTable *table = cctx->hashTable;
  LDM_hashEntry *bucket = getBucket(table, hash);
  LDM_hashEntry *cur;
  LDM_hashEntry *bestEntry = NULL;
  U64 bestMatchLength = 0;
#if !(USE_CHECKSUM)
  (void)checksum;
#endif
  for (cur = bucket; cur < bucket + HASH_BUCKET_SIZE; ++cur) {
    const BYTE *pMatch = cur->offset + cctx->ibase;

    // Check checksum for faster check.
#if USE_CHECKSUM
    if (cur->checksum == checksum &&
        cctx->ip - pMatch <= LDM_WINDOW_SIZE) {
#else
    if (cctx->ip - pMatch <= LDM_WINDOW_SIZE) {
#endif
      U64 forwardMatchLength = ZSTD_count(cctx->ip, pMatch, cctx->iend);
      U64 backwardMatchLength, totalMatchLength;

      // Only take matches where the forward match length is large enough
      // for speed.
      if (forwardMatchLength < LDM_MIN_MATCH_LENGTH) {
        continue;
      }

      backwardMatchLength =
          countBackwardsMatch(cctx->ip, cctx->anchor,
                              cur->offset + cctx->ibase,
                              cctx->ibase);

      totalMatchLength = forwardMatchLength + backwardMatchLength;

      if (totalMatchLength >= bestMatchLength) {
        bestMatchLength = totalMatchLength;
        *pForwardMatchLength = forwardMatchLength;
        *pBackwardMatchLength = backwardMatchLength;

        bestEntry = cur;
#ifdef ZSTD_SKIP
        return cur;
#endif
      }
    }
  }
  if (bestEntry != NULL) {
    return bestEntry;
  }
  return NULL;
}

/**
 * Insert an entry into the hash table. The table uses a "circular buffer",
 * with the oldest entry overwritten.
 */
static void HASH_insert(LDM_hashTable *table,
                        const hash_t hash, const LDM_hashEntry entry) {
  *(getBucket(table, hash) + table->bucketOffsets[hash]) = entry;
  table->bucketOffsets[hash]++;
  table->bucketOffsets[hash] &= HASH_BUCKET_SIZE - 1;
}

static void HASH_outputTableOccupancy(const LDM_hashTable *table) {
  U32 ctr = 0;
  LDM_hashEntry *cur = table->entries;
  LDM_hashEntry *end = table->entries + (table->numBuckets * HASH_BUCKET_SIZE);
  for (; cur < end; ++cur) {
    if (cur->offset == 0) {
      ctr++;
    }
  }

  // The number of buckets is repeated as a check for now.
  printf("Num buckets, bucket size: %d (2^%d), %d\n",
         table->numBuckets, NUM_HASH_BUCKETS_LOG, HASH_BUCKET_SIZE);
  printf("Hash table size, empty slots, %% empty: %u, %u, %.3f\n",
         table->numEntries, ctr,
         100.0 * (double)(ctr) / table->numEntries);
}

// TODO: This can be done more efficiently, for example by using builtin
// functions (but it is not that important as it is only used for computing
// stats).
static int intLog2(U64 x) {
  int ret = 0;
  while (x >>= 1) {
    ret++;
  }
  return ret;
}

void LDM_printCompressStats(const LDM_compressStats *stats) {
  printf("=====================\n");
  printf("Compression statistics\n");
  printf("Window size, hash table size (bytes): 2^%u, 2^%u\n",
          stats->windowSizeLog, stats->hashTableSizeLog);
  printf("num matches, total match length, %% matched: %u, %llu, %.3f\n",
          stats->numMatches,
          stats->totalMatchLength,
          100.0 * (double)stats->totalMatchLength /
              (double)(stats->totalMatchLength + stats->totalLiteralLength));
  printf("avg match length: %.1f\n", ((double)stats->totalMatchLength) /
                                         (double)stats->numMatches);
  printf("avg literal length, total literalLength: %.1f, %llu\n",
         ((double)stats->totalLiteralLength) / (double)stats->numMatches,
         stats->totalLiteralLength);
  printf("avg offset length: %.1f\n",
         ((double)stats->totalOffset) / (double)stats->numMatches);
  printf("min offset, max offset: %u, %u\n",
         stats->minOffset, stats->maxOffset);

  printf("\n");
  printf("offset histogram | match length histogram\n");
  printf("offset/ML, num matches, %% of matches | num matches, %% of matches\n");

  {
    int i;
    int logMaxOffset = intLog2(stats->maxOffset);
    for (i = 0; i <= logMaxOffset; i++) {
      printf("2^%*d: %10u    %6.3f%% |2^%*d:  %10u    %6.3f \n",
             2, i,
             stats->offsetHistogram[i],
             100.0 * (double) stats->offsetHistogram[i] /
                     (double) stats->numMatches,
             2, i,
             stats->matchLengthHistogram[i],
             100.0 * (double) stats->matchLengthHistogram[i] /
                     (double) stats->numMatches);
    }
  }
  printf("\n");
  printf("=====================\n");
}

/**
 * Return the upper (most significant) NUM_HASH_BUCKETS_LOG bits.
 */
static hash_t getSmallHash(U64 hash) {
  return hash >> (64 - NUM_HASH_BUCKETS_LOG);
}

/**
 * Return the 32 bits after the upper NUM_HASH_BUCKETS_LOG bits.
 */
static U32 getChecksum(U64 hash) {
  return (hash >> (64 - 32 - NUM_HASH_BUCKETS_LOG)) & 0xFFFFFFFF;
}

#if INSERT_BY_TAG
static U32 lowerBitsFromHfHash(U64 hash) {
  // The number of bits used so far is NUM_HASH_BUCKETS_LOG + 32.
  // So there are 32 - NUM_HASH_BUCKETS_LOG bits left.
  // Occasional hashing requires HASH_ONLY_EVERY_LOG bits.
  // So if 32 - LDMHASHLOG < HASH_ONLY_EVERY_LOG, just return lower bits
  // allowing for reuse of bits.
  if (32 - NUM_HASH_BUCKETS_LOG < HASH_ONLY_EVERY_LOG) {
    return hash & HASH_ONLY_EVERY;
  } else {
    // Otherwise shift by
    // (32 - NUM_HASH_BUCKETS_LOG - HASH_ONLY_EVERY_LOG) bits first.
    return (hash >> (32 - NUM_HASH_BUCKETS_LOG - HASH_ONLY_EVERY_LOG)) &
           HASH_ONLY_EVERY;
  }
}
#endif

/**
 * Get a 64-bit hash using the first len bytes from buf.
 *
 * Giving bytes s = s_1, s_2, ... s_k, the hash is defined to be
 * H(s) = s_1*(a^(k-1)) + s_2*(a^(k-2)) + ... + s_k*(a^0)
 *
 * where the constant a is defined to be prime8bytes.
 *
 * The implementation adds an offset to each byte, so
 * H(s) = (s_1 + HASH_CHAR_OFFSET)*(a^(k-1)) + ...
 */
static U64 getHash(const BYTE *buf, U32 len) {
  U64 ret = 0;
  U32 i;
  for (i = 0; i < len; i++) {
    ret *= prime8bytes;
    ret += buf[i] + HASH_CHAR_OFFSET;
  }
  return ret;

}

static U64 ipow(U64 base, U64 exp) {
  U64 ret = 1;
  while (exp) {
    if (exp & 1) {
      ret *= base;
    }
    exp >>= 1;
    base *= base;
  }
  return ret;
}

static U64 updateHash(U64 hash, U32 len,
                      BYTE toRemove, BYTE toAdd) {
  // TODO: this relies on compiler optimization.
  // The exponential can be calculated explicitly as len is constant.
  hash -= ((toRemove + HASH_CHAR_OFFSET) *
          ipow(prime8bytes, len - 1));
  hash *= prime8bytes;
  hash += toAdd + HASH_CHAR_OFFSET;
  return hash;
}

/**
 * Update cctx->nextHash and cctx->nextPosHashed
 * based on cctx->lastHash and cctx->lastPosHashed.
 *
 * This uses a rolling hash and requires that the last position hashed
 * corresponds to cctx->nextIp - step.
 */
static void setNextHash(LDM_CCtx *cctx) {
  cctx->nextHash = updateHash(
      cctx->lastHash, LDM_HASH_LENGTH,
      cctx->lastPosHashed[0],
      cctx->lastPosHashed[LDM_HASH_LENGTH]);
  cctx->nextPosHashed = cctx->nextIp;

#if LDM_LAG
  if (cctx->ip - cctx->ibase > LDM_LAG) {
    cctx->lagHash = updateHash(
      cctx->lagHash, LDM_HASH_LENGTH,
      cctx->lagIp[0], cctx->lagIp[LDM_HASH_LENGTH]);
    cctx->lagIp++;
  }
#endif
}

static void putHashOfCurrentPositionFromHash(LDM_CCtx *cctx, U64 hash) {
  // Hash only every HASH_ONLY_EVERY times, based on cctx->ip.
  // Note: this works only when cctx->step is 1.
#if LDM_LAG
  if (cctx -> lagIp - cctx->ibase > 0) {
#if INSERT_BY_TAG
    U32 hashEveryMask = lowerBitsFromHfHash(cctx->lagHash);
    if (hashEveryMask == HASH_ONLY_EVERY) {
#else
    if (((cctx->ip - cctx->ibase) & HASH_ONLY_EVERY) == HASH_ONLY_EVERY) {
#endif
      U32 smallHash = getSmallHash(cctx->lagHash);

#   if USE_CHECKSUM
      U32 checksum = getChecksum(cctx->lagHash);
      const LDM_hashEntry entry = { cctx->lagIp - cctx->ibase, checksum };
#   else
      const LDM_hashEntry entry = { cctx->lagIp - cctx->ibase };
#   endif

      HASH_insert(cctx->hashTable, smallHash, entry);
    }
  } else {
#endif // LDM_LAG
#if INSERT_BY_TAG
    U32 hashEveryMask = lowerBitsFromHfHash(hash);
    if (hashEveryMask == HASH_ONLY_EVERY) {
#else
    if (((cctx->ip - cctx->ibase) & HASH_ONLY_EVERY) == HASH_ONLY_EVERY) {
#endif
      U32 smallHash = getSmallHash(hash);

#if USE_CHECKSUM
      U32 checksum = getChecksum(hash);
      const LDM_hashEntry entry = { cctx->ip - cctx->ibase, checksum };
#else
      const LDM_hashEntry entry = { cctx->ip - cctx->ibase };
#endif
      HASH_insert(cctx->hashTable, smallHash, entry);
    }
#if LDM_LAG
  }
#endif

  cctx->lastPosHashed = cctx->ip;
  cctx->lastHash = hash;
}

/**
 * Copy over the cctx->lastHash, and cctx->lastPosHashed
 * fields from the "next" fields.
 *
 * This requires that cctx->ip == cctx->nextPosHashed.
 */
static void LDM_updateLastHashFromNextHash(LDM_CCtx *cctx) {
  putHashOfCurrentPositionFromHash(cctx, cctx->nextHash);
}

/**
 * Insert hash of the current position into the hash table.
 */
static void LDM_putHashOfCurrentPosition(LDM_CCtx *cctx) {
  U64 hash = getHash(cctx->ip, LDM_HASH_LENGTH);

  putHashOfCurrentPositionFromHash(cctx, hash);
}

size_t LDM_initializeCCtx(LDM_CCtx *cctx,
                          const void *src, size_t srcSize,
                          void *dst, size_t maxDstSize) {
  cctx->isize = srcSize;
  cctx->maxOSize = maxDstSize;

  cctx->ibase = (const BYTE *)src;
  cctx->ip = cctx->ibase;
  cctx->iend = cctx->ibase + srcSize;

  cctx->ihashLimit = cctx->iend - LDM_HASH_LENGTH;
  cctx->imatchLimit = cctx->iend - LDM_MIN_MATCH_LENGTH;

  cctx->obase = (BYTE *)dst;
  cctx->op = (BYTE *)dst;

  cctx->anchor = cctx->ibase;

  memset(&(cctx->stats), 0, sizeof(cctx->stats));
#if USE_CHECKSUM
  cctx->hashTable = HASH_createTable(LDM_HASHTABLESIZE_U64);
#else
  cctx->hashTable = HASH_createTable(LDM_HASHTABLESIZE_U32);
#endif

  if (!cctx->hashTable) return 1;

  cctx->stats.minOffset = UINT_MAX;
  cctx->stats.windowSizeLog = LDM_WINDOW_SIZE_LOG;
  cctx->stats.hashTableSizeLog = LDM_MEMORY_USAGE;

  cctx->lastPosHashed = NULL;

  cctx->step = 1;   // Fixed to be 1 for now. Changing may break things.
  cctx->nextIp = cctx->ip + cctx->step;
  cctx->nextPosHashed = 0;

  return 0;
}

void LDM_destroyCCtx(LDM_CCtx *cctx) {
  HASH_destroyTable(cctx->hashTable);
}

/**
 * Finds the "best" match.
 *
 * Returns 0 if successful and 1 otherwise (i.e. no match can be found
 * in the remaining input that is long enough).
 *
 * forwardMatchLength contains the forward length of the match.
 */
static int LDM_findBestMatch(LDM_CCtx *cctx, const BYTE **match,
                             U64 *forwardMatchLength, U64 *backwardMatchLength) {

  LDM_hashEntry *entry = NULL;
  cctx->nextIp = cctx->ip + cctx->step;

  while (entry == NULL) {
    U64 hash;
    hash_t smallHash;
    U32 checksum;
#if INSERT_BY_TAG
    U32 hashEveryMask;
#endif
    setNextHash(cctx);

    hash = cctx->nextHash;
    smallHash = getSmallHash(hash);
    checksum = getChecksum(hash);
#if INSERT_BY_TAG
    hashEveryMask = lowerBitsFromHfHash(hash);
#endif

    cctx->ip = cctx->nextIp;
    cctx->nextIp += cctx->step;

    if (cctx->ip > cctx->imatchLimit) {
      return 1;
    }
#if INSERT_BY_TAG
    if (hashEveryMask == HASH_ONLY_EVERY) {

      entry = HASH_getBestEntry(cctx, smallHash, checksum,
                                forwardMatchLength, backwardMatchLength);
    }
#else
    entry = HASH_getBestEntry(cctx, smallHash, checksum,
                              forwardMatchLength, backwardMatchLength);
#endif

    if (entry != NULL) {
      *match = entry->offset + cctx->ibase;
    }

    putHashOfCurrentPositionFromHash(cctx, hash);

  }
  setNextHash(cctx);
  return 0;
}

void LDM_encodeLiteralLengthAndLiterals(
    LDM_CCtx *cctx, BYTE *pToken, const U64 literalLength) {
  /* Encode the literal length. */
  if (literalLength >= RUN_MASK) {
    U64 len = (U64)literalLength - RUN_MASK;
    *pToken = (RUN_MASK << ML_BITS);
    for (; len >= 255; len -= 255) {
      *(cctx->op)++ = 255;
    }
    *(cctx->op)++ = (BYTE)len;
  } else {
    *pToken = (BYTE)(literalLength << ML_BITS);
  }

  /* Encode the literals. */
  memcpy(cctx->op, cctx->anchor, literalLength);
  cctx->op += literalLength;
}

void LDM_outputBlock(LDM_CCtx *cctx,
                     const U64 literalLength,
                     const U32 offset,
                     const U64 matchLength) {
  BYTE *pToken = cctx->op++;

  /* Encode the literal length and literals. */
  LDM_encodeLiteralLengthAndLiterals(cctx, pToken, literalLength);

  /* Encode the offset. */
  MEM_write32(cctx->op, offset);
  cctx->op += LDM_OFFSET_SIZE;

  /* Encode the match length. */
  if (matchLength >= ML_MASK) {
    U64 matchLengthRemaining = matchLength;
    *pToken += ML_MASK;
    matchLengthRemaining -= ML_MASK;
    MEM_write32(cctx->op, 0xFFFFFFFF);
    while (matchLengthRemaining >= 4*0xFF) {
      cctx->op += 4;
      MEM_write32(cctx->op, 0xffffffff);
      matchLengthRemaining -= 4*0xFF;
    }
    cctx->op += matchLengthRemaining / 255;
    *(cctx->op)++ = (BYTE)(matchLengthRemaining % 255);
  } else {
    *pToken += (BYTE)(matchLength);
  }
}

// TODO: maxDstSize is unused. This function may seg fault when writing
// beyond the size of dst, as it does not check maxDstSize. Writing to
// a buffer and performing checks is a possible solution.
//
// This is based upon lz4.
size_t LDM_compress(const void *src, size_t srcSize,
                    void *dst, size_t maxDstSize) {
  LDM_CCtx cctx;
  const BYTE *match = NULL;
  U64 forwardMatchLength = 0;
  U64 backwardsMatchLength = 0;

  if (LDM_initializeCCtx(&cctx, src, srcSize, dst, maxDstSize)) {
    // Initialization failed.
    return 0;
  }

#ifdef OUTPUT_CONFIGURATION
  LDM_outputConfiguration();
#endif

  /* Hash the first position and put it into the hash table. */
  LDM_putHashOfCurrentPosition(&cctx);

  cctx.lagIp = cctx.ip;
  cctx.lagHash = cctx.lastHash;

  /**
   * Find a match.
   * If no more matches can be found (i.e. the length of the remaining input
   * is less than the minimum match length), then stop searching for matches
   * and encode the final literals.
   */
  while (!LDM_findBestMatch(&cctx, &match, &forwardMatchLength,
                           &backwardsMatchLength)) {

#ifdef COMPUTE_STATS
    cctx.stats.numMatches++;
#endif

     cctx.ip -= backwardsMatchLength;
     match -= backwardsMatchLength;

    /**
     * Write current block (literals, literal length, match offset, match
     * length) and update pointers and hashes.
     */
    {
      const U64 literalLength = cctx.ip - cctx.anchor;
      const U32 offset = cctx.ip - match;
      const U64 matchLength = forwardMatchLength +
                              backwardsMatchLength -
                              LDM_MIN_MATCH_LENGTH;

      LDM_outputBlock(&cctx, literalLength, offset, matchLength);

#ifdef COMPUTE_STATS
      cctx.stats.totalLiteralLength += literalLength;
      cctx.stats.totalOffset += offset;
      cctx.stats.totalMatchLength += matchLength + LDM_MIN_MATCH_LENGTH;
      cctx.stats.minOffset =
          offset < cctx.stats.minOffset ? offset : cctx.stats.minOffset;
      cctx.stats.maxOffset =
          offset > cctx.stats.maxOffset ? offset : cctx.stats.maxOffset;
      cctx.stats.offsetHistogram[(U32)intLog2(offset)]++;
      cctx.stats.matchLengthHistogram[
          (U32)intLog2(matchLength + LDM_MIN_MATCH_LENGTH)]++;
#endif

      // Move ip to end of block, inserting hashes at each position.
      cctx.nextIp = cctx.ip + cctx.step;
      while (cctx.ip < cctx.anchor + LDM_MIN_MATCH_LENGTH +
                       matchLength + literalLength) {
        if (cctx.ip > cctx.lastPosHashed) {
          // TODO: Simplify.
          LDM_updateLastHashFromNextHash(&cctx);
          setNextHash(&cctx);
        }
        cctx.ip++;
        cctx.nextIp++;
      }
    }

    // Set start of next block to current input pointer.
    cctx.anchor = cctx.ip;
    LDM_updateLastHashFromNextHash(&cctx);
  }

  /* Encode the last literals (no more matches). */
  {
    const U64 lastRun = cctx.iend - cctx.anchor;
    BYTE *pToken = cctx.op++;
    LDM_encodeLiteralLengthAndLiterals(&cctx, pToken, lastRun);
  }

#ifdef COMPUTE_STATS
  LDM_printCompressStats(&cctx.stats);
  HASH_outputTableOccupancy(cctx.hashTable);
#endif

  {
    const size_t ret = cctx.op - cctx.obase;
    LDM_destroyCCtx(&cctx);
    return ret;
  }
}

void LDM_outputConfiguration(void) {
  printf("=====================\n");
  printf("Configuration\n");
  printf("LDM_WINDOW_SIZE_LOG: %d\n", LDM_WINDOW_SIZE_LOG);
  printf("LDM_MIN_MATCH_LENGTH, LDM_HASH_LENGTH: %d, %d\n",
         LDM_MIN_MATCH_LENGTH, LDM_HASH_LENGTH);
  printf("LDM_MEMORY_USAGE: %d\n", LDM_MEMORY_USAGE);
  printf("HASH_ONLY_EVERY_LOG: %d\n", HASH_ONLY_EVERY_LOG);
  printf("HASH_BUCKET_SIZE_LOG: %d\n", HASH_BUCKET_SIZE_LOG);
  printf("LDM_LAG: %d\n", LDM_LAG);
  printf("USE_CHECKSUM: %d\n", USE_CHECKSUM);
  printf("INSERT_BY_TAG: %d\n", INSERT_BY_TAG);
  printf("HASH_CHAR_OFFSET: %d\n", HASH_CHAR_OFFSET);
  printf("=====================\n");
}