1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
namespace tf {
/** @page ModuleAlgorithm Module Algorithm
%Taskflow provides template methods that let users create reusable building blocks
called @em modules.
Users can connect modules together to build more complex parallel algorithms.
@tableofcontents
@section ModuleAlgorithmInclude Include the Header
You need to include the header file, <tt>taskflow/algorithm/module.hpp</tt>,
for creating a module task over a schedulable graph target.
@code{.cpp}
#include <taskflow/algorithm/module.hpp>
@endcode
@section WhatIsAModuleTask What is a Module Task
Similar to @ref ComposableTasking, but in a more generic setting,
the template function, tf::make_module_task,
allows you to create a task over a taskflow graph that can be executed by an executor.
This provides a flexible way to encapsulate and reuse complex task logic within your
%Taskflow applications.
The example below demonstrates how to create and launch multiple taskflows in parallel
using asynchronous tasking:
@code{.cpp}
tf::Executor executor;
tf::Taskflow A;
tf::Taskflow B;
tf::Taskflow C;
tf::Taskflow D;
A.emplace([](){ printf("Taskflow A\n"); });
B.emplace([](){ printf("Taskflow B\n"); });
C.emplace([](){ printf("Taskflow C\n"); });
D.emplace([](){ printf("Taskflow D\n"); });
// launch the four taskflows using asynchronous tasking
executor.async(tf::make_module_task(A));
executor.async(tf::make_module_task(B));
executor.async(tf::make_module_task(C));
executor.async(tf::make_module_task(D));
executor.wait_for_all();
@endcode
@dotfile images/module_task_1.dot
Since the four taskflows are launched asynchronously without any dependencies between them,
we can observe any order of the output message:
@code{.shell-session}
# one possible output
Taskflow B
Taskflow C
Taskflow A
Taskflow D
# another possible output
Taskflow D
Taskflow A
Taskflow B
Taskflow C
@endcode
If you need to enforce dependencies among these four taskflows,
you can use dependent-async tasks.
The example below launches the four taskflows one by one in sequential:
@code{.cpp}
tf::Executor executor;
tf::Taskflow A;
tf::Taskflow B;
tf::Taskflow C;
tf::Taskflow D;
A.emplace([](){ printf("Taskflow A\n"); });
B.emplace([](){ printf("Taskflow B\n"); });
C.emplace([](){ printf("Taskflow C\n"); });
D.emplace([](){ printf("Taskflow D\n"); });
auto TA = executor.silent_dependent_async(tf::make_module_task(A));
auto TB = executor.silent_dependent_async(tf::make_module_task(B), TA);
auto TC = executor.silent_dependent_async(tf::make_module_task(C), TB);
auto [TD, FD] = executor.dependent_async(tf::make_module_task(D), TC);
FD.get();
@endcode
@dotfile images/module_task_2.dot
@code{.shell-session}
# dependent-async tasks enforce a sequential execution of the four taskflows
Taskflow A
Taskflow B
Taskflow C
Taskflow D
@endcode
The module task maker, tf::make_module_task, functions basically similar to tf::Taskflow::composed_of
but provides a more generic interface that can be used beyond %Taskflow.
Specifically, the following two approaches achieve the same functionality.
@code{.cpp}
// approach 1: composition using composed_of
tf::Task m1 = taskflow1.composed_of(taskflow2);
// approach 2: composition using make_module_task
tf::Task m1 = taskflow1.emplace(tf::make_module_task(taskflow2));
@endcode
@attention
Similar to tf::Taskflow::composed_of, tf::make_module_task does not assume ownership of
the provided taskflow but a soft reference.
You are responsible for ensuring that the encapsulated taskflow remains valid
throughout its execution.
@section CreateAModuleTaskOverACustomGraph Create a Module Task over a Custom Graph
In addition to encapsulate taskflow graphs, you can create a module task to schedule
a custom graph target.
A schedulable target (of type `T`) must define the method `T::graph()` that returns a reference
to the tf::Graph object managed by `T`.
The following example defines a custom graph that can be scheduled through making module tasks:
@code{.cpp}
struct CustomGraph {
tf::Graph graph;
CustomGraph() {
// use flow builder to inherit all task creation methods in tf::Taskflow
tf::FlowBuilder builder(graph);
tf::Task task = builder.emplace([](){
std::cout << "a task\n"; // static task
});
}
// returns a reference to the graph for taskflow composition
Graph& graph() { return graph; }
};
CustomGraph target;
executor.async(tf::make_module_task(target));
@endcode
@attention
Users are responsible for ensuring the given custom graph remains valid throughout its execution.
The executor does not assume ownership of the custom graph.
*/
}
|