File: transform.dox

package info (click to toggle)
taskflow 3.9.0%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 45,948 kB
  • sloc: cpp: 39,058; xml: 35,572; python: 12,935; javascript: 1,732; makefile: 59; sh: 16
file content (166 lines) | stat: -rw-r--r-- 4,832 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
namespace tf {

/** @page ParallelTransforms Parallel Transforms

%Taskflow provides template functions for constructing tasks to 
perform parallel transforms over ranges of items.

@tableofcontents

@section ParallelTransformsInclude Include the Header

You need to include the header file, <tt>taskflow/algorithm/transform.hpp</tt>,
for creating a parallel-transform task.

@code{.cpp}
#include <taskflow/algorithm/transform.hpp>
@endcode

@section ParallelTransformsOverARange Create a Unary Parallel-Transform Task

Parallel-transform transforms a range of items, possibly
with a different type for the transformed data, and stores the result in another range.
The task created by tf::Taskflow::transform(B first1, E last1, O d_first, C c, P&& part)
is equivalent to a parallel execution of the following loop:

@code{.cpp}
while (first1 != last1) {
  *d_first++ = c(*first1++);
}
@endcode

tf::Taskflow::transform
simultaneously applies the callable @c c to the object obtained by dereferencing 
every iterator in the range <tt>[first1, last1)</tt> and stores
the result in another range beginning at @c d_first.
It is user's responsibility for ensuring the range is valid 
within the execution of the parallel-transform task. 

@code{.cpp}
std::vector<int> src = {1, 2, 3, 4, 5};
std::vector<int> tgt(src.size());
taskflow.transform(src.begin(), src.end(), tgt.begin(), [](int i){ 
  std::cout << "transforming item " << i << " to " << i + 1 << '\n';
  return i + 1;
});
@endcode

@section ParallelTransformsCaptureIteratorsByReference Capture Iterators by Reference

You can pass iterators by reference using @std_ref
to marshal parameter update between dependent tasks.
This is especially useful when the range is unknown
at the time of creating a parallel-transform task,
but needs initialization from another task.

@code{.cpp}
std::vector<int> src, tgt;
std::vector<int>::iterator first, last, d_first;

tf::Task init = taskflow.emplace([&](){
  src.resize(1000);
  tgt.resize(1000);
  first   = src.begin();
  last    = src.end();
  d_first = tgt.begin();
});

tf::Task transform = taskflow.transform(
  std::ref(first), std::ref(last), std::ref(d_first), 
  [&](int i) {
    std::cout << "transforming item " << i << " to " << i + 1 << '\n';
    return i+1;
  }
);

init.precede(transform);
@endcode

When @c init finishes, the parallel-transform task @c transform 
will see @c first pointing to the beginning of @c src and 
@c last pointing to the end of @c src.
Then, it simultaneously transforms these 1000 items 
by adding one to each element and stores the result 
in another range starting at @c d_first.

@section ParallelBinaryTransformsOverARange Create a Binary Parallel-Transform Task

You can use the overload, 
tf::Taskflow::transform(B1 first1, E1 last1, B2 first2, O d_first, C c, P&& part),
to perform parallel transforms on two source ranges pointed by
@c first1 and @c first2 using the binary
operator @c c
and store the result in another range pointed by @c d_first.
This method is equivalent to the parallel execution of the following loop:
    
@code{.cpp}
while (first1 != last1) {
  *d_first++ = c(*first1++, *first2++);
}
@endcode

The following example creates a parallel-transform task 
that adds two ranges of elements one by one
and stores the result in a target range:

@code{.cpp}
std::vector<int> src1 = {1, 2, 3, 4, 5};
std::vector<int> src2 = {5, 4, 3, 2, 1};
std::vector<int> tgt(src1.size());
taskflow.transform(
  src1.begin(), src1.end(), src2.begin(), tgt.begin(), 
  [](int i, int j){ 
    return i + j;
  }
);
@endcode

@section ParallelTransformsCfigureAPartitioner Configure a Partitioner

You can configure a partitioner for parallel-transform tasks to run with different
scheduling methods, such as guided partitioning, dynamic partitioning, and static partitioning.
The following example creates two parallel-transform tasks using two different
partitioners, one with the static partitioning algorithm and 
another one with the guided partitioning algorithm:

@code{.cpp}
tf::StaticPartitioner static_partitioner;
tf::GuidedPartitioner guided_partitioner;

std::vector<int> src1 = {1, 2, 3, 4, 5};
std::vector<int> src2 = {5, 4, 3, 2, 1};
std::vector<int> tgt1(src1.size());
std::vector<int> tgt2(src2.size());

// create a parallel-transform task with static execution partitioner
taskflow.transform(
  src1.begin(), src1.end(), src2.begin(), tgt1.begin(), 
  [](int i, int j){ 
    return i + j;
  },
  static_partitioner
);

// create a parallel-transform task with guided execution partitioner
taskflow.transform(
  src1.begin(), src1.end(), src2.begin(), tgt2.begin(), 
  [](int i, int j){ 
    return i + j;
  },
  guided_partitioner
);
@endcode

@attention
By default, parallel-transform tasks use tf::DefaultPartitioner
if no partitioner is specified. 

*/

}