File: tfprof.cpp

package info (click to toggle)
taskflow 3.9.0%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 45,948 kB
  • sloc: cpp: 39,058; xml: 35,572; python: 12,935; javascript: 1,732; makefile: 59; sh: 16
file content (643 lines) | stat: -rw-r--r-- 16,798 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
// 3rd-party include

#include <httplib.h>
#include <CLI/CLI.hpp>
#include <nlohmann/json.hpp>
#include <spdlog/spdlog.h>

#include <taskflow/taskflow.hpp>
#include <cmath>

namespace tf {

class Database {

  public:

  enum ViewType {
    CLUSTER = 0,
    CRITICALITY
  };

  struct WorkerData {
    size_t eid;
    size_t wid;
    size_t lid;
    std::string name;
    std::vector<Segment> tasks;

    WorkerData(
      size_t e, size_t w, size_t l, std::string n, std::vector<Segment> t
    ) :
      eid{e}, wid{w}, lid{l}, name {std::move(n)}, tasks{std::move(t)} {
    }

    WorkerData(const WorkerData&) = delete;
    WorkerData(WorkerData&&) = default;

    WorkerData& operator = (const WorkerData&) = delete;
    WorkerData& operator = (WorkerData&&) = default;

    std::optional<size_t> lower_bound(observer_stamp_t value) const {

      size_t slen = tasks.size();
      size_t beg, end, mid;
      std::optional<size_t> l;

      // l = minArg {span[1] >= zoomX[0]}
      beg = 0, end = slen;
      while(beg < end) {
        mid = (beg + end) >> 1;
        if(tasks[mid].end >= value) {
          end = mid;
          l = (l == std::nullopt) ? mid : std::min(mid, *l);
        }
        else {
          beg = mid + 1;
        }
      };

      return l;
    }

    std::optional<size_t> upper_bound(observer_stamp_t value) const {

      size_t slen = tasks.size();
      size_t beg, end, mid;
      std::optional<size_t> r;

      // r = maxArg {span[0] <= zoomX[1]}
      beg = 0, end = slen;
      while(beg < end) {
        mid = (beg + end) >> 1;
        if(tasks[mid].beg <= value) {
          beg = mid + 1;
          r = (r == std::nullopt) ? mid : std::max(mid, *r);
        }
        else {
          end = mid;
        }
      }

      return r;
    }
  };

  struct Criticality {

    size_t i;
    std::vector<Segment>::const_iterator key;

    Criticality(size_t in_i, std::vector<Segment>::const_iterator in_key) :
      i{in_i}, key{in_key} {
    }
  };

  struct CriticalityComparator {
    bool operator () (const Criticality& a, const Criticality& b) const {
      return a.key->span() > b.key->span();
    }
  };

  struct CriticalityHeap : public std::priority_queue<
    Criticality, std::vector<Criticality>, CriticalityComparator
  > {

    void sort() {
      std::sort(c.begin(), c.end(), [] (const auto& a, const auto& b) {
        if(a.i == b.i) {
          return a.key->beg < b.key->beg;
        }
        return a.i < b.i;
      });
    }

    const std::vector<Criticality>& get() const {
      return c;
    }
  };

  struct Cluster {
    size_t i;
    size_t f;  // from task
    size_t t;  // to task   (inclusive)
    observer_stamp_t::duration k;  // key

    Cluster(size_t in_i, size_t in_f, size_t in_t, observer_stamp_t::duration in_k) :
      i{in_i}, f{in_f}, t{in_t}, k{in_k} {
    }

    using iterator_t = std::list<Cluster>::iterator;
  };

  struct ClusterComparator {
    bool operator () (Cluster::iterator_t a, Cluster::iterator_t b) const {
      return a->k > b->k;
    }
  };

  using ClusterHeap = std::priority_queue<
    Cluster::iterator_t, std::vector<Cluster::iterator_t>, ClusterComparator
  >;

  public:

  Database(const std::string& fpath) {

    std::ifstream ifs(fpath);

    if(!ifs) {
      TF_THROW("failed to open profile data ", fpath);
    }

    ProfileData pd;
    tf::Deserializer<std::ifstream> deserializer(ifs);
    deserializer(pd);

    // find the minimum starting point

    for(auto& timeline : pd.timelines) {
      if(timeline.origin < _minX) {
        _minX = timeline.origin;
      }
    }

    // conver to flat data
    _num_executors = pd.timelines.size();
    for(size_t e=0; e<pd.timelines.size(); e++) {
      _num_workers += pd.timelines[e].segments.size();
      for(size_t w=0; w<pd.timelines[e].segments.size(); w++) {
        for(size_t l=0; l<pd.timelines[e].segments[w].size(); l++) {
          // a new worker data
          WorkerData wd(
            e, w, l, stringify("E", e, ".W", w, ".L", l),
            std::move(pd.timelines[e].segments[w][l])
          );
          if(!wd.tasks.empty()) {
            if(wd.tasks.front().beg < _minX) _minX = wd.tasks.front().beg;
            if(wd.tasks.back().end > _maxX) _maxX = wd.tasks.back().end;
          }
          _num_tasks += wd.tasks.size();
          _wdmap[wd.name] = _wd.size();
          _wd.push_back(std::move(wd));
        }
      }
    }
  }

  template <typename D>
  void query_criticality(
    std::ostream& os,
    const std::optional<D>& xbeg, const std::optional<D>& xend,
    const std::optional<std::vector<std::string>>& workers,
    size_t limit
  ) const {

    auto x = decode_zoomx(xbeg, xend);
    auto w = decode_zoomy(workers);

    CriticalityHeap heap;

    // bsearch the range of segments for each worker data
    // TODO: parallel_for?
    for(size_t i=0; i<w.size(); i++) {

      // r = maxArg {span[0] <= zoomX[1]}
      auto r = _wd[w[i]].upper_bound(x.second);
      if(r == std::nullopt) {
        continue;
      }

      // l = minArg {span[1] >= zoomX[0]}
      auto l = _wd[w[i]].lower_bound(x.first);
      if(l == std::nullopt || *l > *r) {
        continue;
      }

      // range ok
      for(size_t s=*l; s<=*r; s++) {
        heap.emplace(i, _wd[w[i]].tasks.begin() + s);
        while(heap.size() > limit) {
          heap.pop();
        }
      }
    }

    heap.sort();

    auto& crits = heap.get();

    size_t cursor = 0;

    // Output the segments
    bool first_worker = true;
    os << "[";
    for(size_t i=0; i<w.size(); i++) {

      if(cursor < crits.size() && crits[cursor].i < i) {
        TF_THROW("impossible ...");
      }

      if(!first_worker) {
        os << ",";
      }
      else {
        first_worker = false;
      }

      os << "{\"executor\":\"" << _wd[w[i]].eid << "\","
         << "\"worker\":\"" << _wd[w[i]].name << "\","
         << "\"segs\": [";

      size_t T=0, loads[TASK_TYPES.size()] = {0}, n=0;
      bool first_crit = true;

      for(; cursor < crits.size() && crits[cursor].i == i; cursor++) {

        n++;

        if(!first_crit) {
          os << ",";
        }
        else {
          first_crit = false;
        }

        // single task
        os << "{";
        const auto& task = *crits[cursor].key;
        os << "\"name\":\"" << task.name << "\","
           << "\"type\":\"" << to_string(task.type) << "\","
           << "\"span\": [" << std::chrono::duration_cast<D>(task.beg-_minX).count()
                            << ","
                            << std::chrono::duration_cast<D>(task.end-_minX).count()
                            << "]";
        os << "}";

        // calculate load
        size_t t = std::chrono::duration_cast<D>(task.span()).count();
        T += t;
        loads[static_cast<int>(task.type)] += t;
      }
      os << "],\"tasks\":\"" << n << "\",";

      // load
      os << "\"load\":[";
      size_t x = 0;
      for(size_t k=0; k<TASK_TYPES.size(); k++) {
        auto type = static_cast<int>(TASK_TYPES[k]);
        if(k) os << ",";
        os << "{\"type\":\"" << to_string(TASK_TYPES[k]) << "\","
           << "\"span\":[" << x << "," << x+loads[type] << "],"
           << "\"ratio\":" << (T>0 ? loads[type]*100.0f/T : 0) << "}";
        x+=loads[type];
      }
      os << "],";

      // totalTime
      os << "\"totalTime\":" << T;

      os << "}";
    }
    os << "]";
  }

  template <typename D>
  void query_cluster(
    std::ostream& os,
    const std::optional<D>& xbeg, const std::optional<D>& xend,
    const std::optional<std::vector<std::string>>& workers,
    size_t limit
  ) const {

    auto x = decode_zoomx(xbeg, xend);
    auto w = decode_zoomy(workers);

    std::vector<std::list<Cluster>> clusters{w.size()};
    ClusterHeap heap;

    // bsearch the range of segments for each worker data
    // TODO: parallel_for?
    for(size_t i=0; i<w.size(); i++) {

      // r = maxArg {span[0] <= zoomX[1]}
      auto r = _wd[w[i]].upper_bound(x.second);
      if(r == std::nullopt) {
        continue;
      }

      // l = minArg {span[1] >= zoomX[0]}
      auto l = _wd[w[i]].lower_bound(x.first);
      if(l == std::nullopt || *l > *r) {
        continue;
      }

      // range ok
      for(size_t s=*l; s<=*r; s++) {
        if(s != *r) {
          clusters[i].emplace_back(
            i,
            s,
            s,
            _wd[w[i]].tasks[s+1].end - _wd[w[i]].tasks[s].beg
          );
        }
        else {  // boundary
          clusters[i].emplace_back(
            i, s, s, observer_stamp_t::duration::max()
          );
        }
        heap.push(std::prev(clusters[i].end()));
      }

      // while loop must sit after clustering is done
      // because we have std::next(top)-> = top->f
      while(heap.size() > limit) {

        auto top = heap.top();

        // if all clusters are in boundary - no need to cluster anymore
        if(top->k == observer_stamp_t::duration::max()) {
          break;
        }

        // remove the top element and cluster it with the next
        heap.pop();

        // merge top with top->next
        std::next(top)->f = top->f;
        clusters[top->i].erase(top);
      }

    }

    // Output the segments
    bool first_worker = true;
    os << "[";
    for(size_t i=0; i<w.size(); i++) {

      if(!first_worker) {
        os << ",";
      }
      else {
        first_worker = false;
      }

      os << "{\"executor\":\"" << _wd[w[i]].eid << "\","
         << "\"worker\":\"" << _wd[w[i]].name << "\","
         << "\"tasks\":\"" << clusters[i].size() << "\","
         << "\"segs\": [";

      size_t T=0, loads[TASK_TYPES.size()] = {0};
      bool first_cluster = true;

      for(const auto& cluster : clusters[i]) {

        if(!first_cluster) {
          os << ",";
        }
        else {
          first_cluster = false;
        }

        // single task
        os << "{";
        if(cluster.f == cluster.t) {
          const auto& task = _wd[w[i]].tasks[cluster.f];
          os << "\"name\":\"" << task.name << "\","
             << "\"type\":\"" << to_string(task.type) << "\","
             << "\"span\": [" << std::chrono::duration_cast<D>(task.beg-_minX).count()
                              << ","
                              << std::chrono::duration_cast<D>(task.end-_minX).count()
                              << "]";
        }
        else {
          const auto& ftask = _wd[w[i]].tasks[cluster.f];
          const auto& ttask = _wd[w[i]].tasks[cluster.t];
          os << "\"name\":\"(" << (cluster.t-cluster.f+1) << " tasks)\","
             << "\"type\":\"clustered\","
             << "\"span\": ["  << std::chrono::duration_cast<D>(ftask.beg-_minX).count()
                               << ","
                               << std::chrono::duration_cast<D>(ttask.end-_minX).count()
                               << "]";
        }
        os << "}";

        // calculate load
        // TODO optimization with DP
        for(size_t j=cluster.f; j<=cluster.t; j++) {
          size_t t = std::chrono::duration_cast<D>(_wd[w[i]].tasks[j].span()).count();
          T += t;
          loads[static_cast<int>(_wd[w[i]].tasks[j].type)] += t;
        }
      }
      os << "],";  // end segs

      // load
      os << "\"load\":[";
      size_t x = 0;
      for(size_t k=0; k<TASK_TYPES.size(); k++) {
        auto type = static_cast<int>(TASK_TYPES[k]);
        if(k) os << ",";
        os << "{\"type\":\"" << to_string(TASK_TYPES[k]) << "\","
           << "\"span\":[" << x << "," << x+loads[type] << "],"
           << "\"ratio\":" << (T>0 ? loads[type]*100.0f/T : 0) << "}";
        x+=loads[type];
      }
      os << "],";

      // totalTime
      os << "\"totalTime\":" << T;

      os << "}";
    }
    os << "]";
  }

  observer_stamp_t minX() const {
    return _minX;
  }

  observer_stamp_t maxX() const {
    return _maxX;
  }

  size_t num_tasks() const {
    return _num_tasks;
  }

  size_t num_executors() const {
    return _num_executors;
  }

  size_t num_workers() const {
    return _num_workers;
  }

  private:

    std::vector<WorkerData> _wd;

    // {std::numeric_limits<size_t>::max()};
    // {std::numeric_limits<size_t>::lowest()};

    observer_stamp_t _minX {observer_stamp_t::max()};
    observer_stamp_t _maxX {observer_stamp_t::min()};

    size_t _num_tasks {0};
    size_t _num_executors {0};
    size_t _num_workers {0};

    std::unordered_map<std::string, size_t> _wdmap;

    template <typename D>
    std::pair<observer_stamp_t, observer_stamp_t>
    decode_zoomx(std::optional<D> beg, std::optional<D> end) const {
      observer_stamp_t b = beg ? *beg + _minX : _minX;
      observer_stamp_t e = end ? *end + _minX : _maxX;
      return {b, e};
    }

    std::vector<size_t> decode_zoomy(std::optional<std::vector<std::string>> zoomy) const {
      if(zoomy) {
        std::vector<size_t> w(zoomy->size());
        for(size_t i=0; i<zoomy->size(); i++) {
          auto itr = _wdmap.find((*zoomy)[i]);
          if(itr == _wdmap.end()) {
            TF_THROW("failed to find worker ", (*zoomy)[i]);
          }
          w[i] = itr->second;
        }
        return w;
      }
      else {
        std::vector<size_t> w(_wd.size());
        for(size_t i=0; i<_wd.size(); i++) {
          w[i] = i;
        }
        return w;
      }
    }
};

}  // namespace tf ------------------------------------------------------------

int main(int argc, char* argv[]) {

  // parse arguments
  CLI::App app{"tfprof"};

  int port{8080};
  app.add_option("-p,--port", port, "port to listen (default=8080)");

  std::string input;
  app.add_option("-i,--input", input, "input profiling file")
     ->required();

  std::string mount = "/usr/share/taskflow";
  app.add_option("-m,--mount", mount, "mount path to index.html");

  CLI11_PARSE(app, argc, argv);

  // change log pattern
  spdlog::set_pattern("[%^%L %D %H:%M:%S.%e%$] %v");
  spdlog::set_level(spdlog::level::debug); // Set global log level to debug

  spdlog::info("reading database {} ...", input);

  // create a database
  tf::Database db(input);
  spdlog::info(
    "read {} (#tasks={:d}, #executors={:d}, #workers={:d})",
    input, db.num_tasks(), db.num_executors(), db.num_workers()
  );

  // create a http server
  httplib::Server server;

  if(server.set_mount_point("/", mount.c_str())) {
    spdlog::info("mounted '/' to {}", mount);
  }
  else {
    spdlog::critical("failed to mount '/' to {}", mount);
  }

  // Put method: queryInfo
  server.Put("/queryInfo",
    [&db, &input](const httplib::Request& req, httplib::Response& res){
      spdlog::info(
        "/queryInfo: connected a new client {0}:{1:d}",
        req.remote_addr, req.remote_port
      );

      std::ostringstream oss;
      oss << "{\"tfpFile\":\"" << input << "\""
          << ",\"numTasks\":" << db.num_tasks()
          << ",\"numExecutors\":" << db.num_executors()
          << ",\"numWorkers\":" << db.num_workers() << '}';

      res.set_content(oss.str().c_str(), "application/json");
      spdlog::info("/queryInfo: sent {0:d} bytes", oss.str().size());
    }
  );

  // Put method: queryData
  server.Put("/queryData",
    [&db](const httplib::Request& req, httplib::Response& res){

      auto body = nlohmann::json::parse(req.body);

      const auto& jx = body["zoomX"];
      const auto& jy = body["zoomY"];
      const auto& jv = body["view"];
      size_t jl = body["limit"];

      spdlog::info(
        "/queryData: zoomX={}, zoomY=[...{} workers], view={}, limit={}",
        jx.dump(), jy.size(), jv.dump(), jl
      );

      std::optional<std::chrono::microseconds> xbeg, xend;
      std::optional<std::vector<std::string>> y;
      tf::Database::ViewType view_type = tf::Database::CLUSTER;

      if(jx.is_array() && jx.size() == 2) {
        xbeg = std::chrono::microseconds(std::llround((double)jx[0]));
        xend = std::chrono::microseconds(std::llround((double)jx[1]));
      }

      if(jy.is_array()) {
        y.emplace();
        for(auto& w : jy) {
          y->push_back(std::move(w));
        }
      }

      if(jv == "Criticality") {
        view_type = tf::Database::CRITICALITY;
      }

      std::ostringstream oss;

      switch(view_type) {
        case tf::Database::CRITICALITY:
          db.query_criticality<std::chrono::microseconds>(oss, xbeg, xend, y, jl);
        break;
        case tf::Database::CLUSTER:
          db.query_cluster<std::chrono::microseconds>(oss, xbeg, xend, y, jl);
        break;
      }

      res.set_content(oss.str().c_str(), "application/json");
      spdlog::info("/queryData: sent {0:d} bytes", oss.str().size());
    }
  );

  spdlog::info("listening to http://localhost:{:d} ...", port);
  server.listen("0.0.0.0", port);
  spdlog::info("shut down server");

  return 0;
}