1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
#define DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN
#include <doctest.h>
#include <taskflow/taskflow.hpp>
#include <taskflow/cuda/cudaflow.hpp>
#include <taskflow/cuda/algorithm/for_each.hpp>
constexpr float eps = 0.0001f;
template <typename T>
void run_and_wait(T& cf) {
tf::cudaStream stream;
cf.run(stream);
stream.synchronize();
}
// ----------------------------------------------------------------------------
// for_each
// ----------------------------------------------------------------------------
template <typename T>
void cuda_for_each() {
tf::Taskflow taskflow;
tf::Executor executor;
for(int n=0; n<=1234567; n = (n<=100) ? n+1 : n*2 + 1) {
taskflow.emplace([n](){
tf::cudaStream stream;
tf::cudaDefaultExecutionPolicy policy(stream);
auto g_data = tf::cuda_malloc_shared<T>(n);
for(int i=0; i<n; i++) {
g_data[i] = 0;
}
tf::cuda_for_each(policy,
g_data, g_data + n, [] __device__ (T& val) { val = 12222; }
);
stream.synchronize();
for(int i=0; i<n; i++) {
REQUIRE(std::fabs(g_data[i] - (T)12222) < eps);
}
tf::cuda_free(g_data);
});
}
executor.run(taskflow).wait();
}
TEST_CASE("cuda_for_each.int" * doctest::timeout(300)) {
cuda_for_each<int>();
}
TEST_CASE("cuda_for_each.float" * doctest::timeout(300)) {
cuda_for_each<float>();
}
TEST_CASE("cuda_for_each.double" * doctest::timeout(300)) {
cuda_for_each<double>();
}
// ----------------------------------------------------------------------------
// for_each
// ----------------------------------------------------------------------------
template <typename T, typename F>
void cudaflow_for_each() {
tf::Taskflow taskflow;
tf::Executor executor;
for(int n=1; n<=1234567; n = (n<=100) ? n+1 : n*2 + 1) {
taskflow.emplace([n](){
auto cpu = static_cast<T*>(std::calloc(n, sizeof(T)));
T* gpu = nullptr;
REQUIRE(cudaMalloc(&gpu, n*sizeof(T)) == cudaSuccess);
F cf;
auto d2h = cf.copy(cpu, gpu, n);
auto h2d = cf.copy(gpu, cpu, n);
auto kernel = cf.for_each(
gpu, gpu+n, [] __device__ (T& val) { val = 65536; }
);
h2d.precede(kernel);
d2h.succeed(kernel);
run_and_wait(cf);
for(int i=0; i<n; i++) {
REQUIRE(std::fabs(cpu[i] - (T)65536) < eps);
}
// update the kernel
cf.for_each(kernel,
gpu, gpu+n, [] __device__ (T& val) { val = 100; }
);
run_and_wait(cf);
for(int i=0; i<n; i++) {
REQUIRE(std::fabs(cpu[i] - (T)100) < eps);
}
std::free(cpu);
REQUIRE(cudaFree(gpu) == cudaSuccess);
});
}
executor.run(taskflow).wait();
}
TEST_CASE("cudaFlow.for_each.int" * doctest::timeout(300)) {
cudaflow_for_each<int, tf::cudaFlow>();
}
TEST_CASE("cudaFlow.for_each.float" * doctest::timeout(300)) {
cudaflow_for_each<float, tf::cudaFlow>();
}
TEST_CASE("cudaFlow.for_each.double" * doctest::timeout(300)) {
cudaflow_for_each<double, tf::cudaFlow>();
}
TEST_CASE("cudaFlowCapturer.for_each.int" * doctest::timeout(300)) {
cudaflow_for_each<int, tf::cudaFlowCapturer>();
}
TEST_CASE("cudaFlowCapturer.for_each.float" * doctest::timeout(300)) {
cudaflow_for_each<float, tf::cudaFlowCapturer>();
}
TEST_CASE("cudaFlowCapturer.for_each.double" * doctest::timeout(300)) {
cudaflow_for_each<double, tf::cudaFlowCapturer>();
}
|