1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
#define DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN
#include <doctest.h>
#include <taskflow/taskflow.hpp>
#include <taskflow/cuda/cudaflow.hpp>
#include <taskflow/cuda/algorithm/merge.hpp>
// ----------------------------------------------------------------------------
// cuda_merge
// ----------------------------------------------------------------------------
template <typename T>
void cuda_merge() {
tf::Taskflow taskflow;
tf::Executor executor;
for(int n1=0; n1<=123456; n1 = n1*2 + 1) {
for(int n2=0; n2<=123456; n2 = n2*2 + 1) {
taskflow.emplace([n1, n2](){
// gpu data
auto da = tf::cuda_malloc_shared<T>(n1);
auto db = tf::cuda_malloc_shared<T>(n2);
auto dc = tf::cuda_malloc_shared<T>(n1 + n2);
// host data
std::vector<T> ha(n1), hb(n2), hc(n1 + n2);
for(int i=0; i<n1; i++) {
da[i] = ha[i] = rand()%100;
}
for(int i=0; i<n2; i++) {
db[i] = hb[i] = rand()%100;
}
std::sort(da, da+n1);
std::sort(db, db+n2);
std::sort(ha.begin(), ha.end());
std::sort(hb.begin(), hb.end());
// --------------------------------------------------------------------------
// GPU merge
// --------------------------------------------------------------------------
tf::cudaStream stream;
tf::cudaDefaultExecutionPolicy policy(stream);
// allocate the buffer
void* buf;
REQUIRE(cudaMalloc(&buf, policy.merge_bufsz(n1, n2)) == cudaSuccess);
tf::cuda_merge(policy,
da, da+n1, db, db+n2, dc, tf::cuda_less<T>{}, buf
);
stream.synchronize();
// --------------------------------------------------------------------------
// CPU merge
// --------------------------------------------------------------------------
std::merge(ha.begin(), ha.end(), hb.begin(), hb.end(), hc.begin());
// --------------------------------------------------------------------------
// verify the result
// --------------------------------------------------------------------------
for(int i=0; i<n1+n2; i++) {
REQUIRE(dc[i] == hc[i]);
}
// --------------------------------------------------------------------------
// deallocate the memory
// --------------------------------------------------------------------------
REQUIRE(cudaFree(da) == cudaSuccess);
REQUIRE(cudaFree(db) == cudaSuccess);
REQUIRE(cudaFree(dc) == cudaSuccess);
REQUIRE(cudaFree(buf) == cudaSuccess);
});
}
}
executor.run(taskflow).wait();
}
TEST_CASE("cuda_merge.int" * doctest::timeout(300)) {
cuda_merge<int>();
}
TEST_CASE("cuda_merge.float" * doctest::timeout(300)) {
cuda_merge<float>();
}
// ----------------------------------------------------------------------------
// cuda_merge_by_key
// ----------------------------------------------------------------------------
template <typename T>
void cuda_merge_by_key() {
tf::Taskflow taskflow;
tf::Executor executor;
for(int n1=0; n1<=123456; n1 = n1*2 + 1) {
for(int n2=0; n2<=123456; n2 = n2*2 + 1) {
taskflow.emplace([n1, n2](){
// gpu data
auto da_k = tf::cuda_malloc_shared<T>(n1);
auto da_v = tf::cuda_malloc_shared<T>(n1);
auto db_k = tf::cuda_malloc_shared<T>(n2);
auto db_v = tf::cuda_malloc_shared<T>(n2);
auto dc_k = tf::cuda_malloc_shared<T>(n1 + n2);
auto dc_v = tf::cuda_malloc_shared<T>(n1 + n2);
std::unordered_map<T, T> map;
for(int i=0; i<n1; i++) {
da_k[i] = 1 + 2*i;
da_v[i] = rand();
map[da_k[i]] = da_v[i];
}
for(int i=0; i<n2; i++) {
db_k[i] = 2*i;
db_v[i] = rand();
map[db_k[i]] = db_v[i];
}
REQUIRE(map.size() == n1 + n2);
tf::cudaStream stream;
tf::cudaDefaultExecutionPolicy policy(stream);
// allocate the buffer
void* buf;
REQUIRE(cudaMalloc(&buf, policy.merge_bufsz(n1, n2)) == cudaSuccess);
tf::cuda_merge_by_key(
policy,
da_k, da_k+n1, da_v,
db_k, db_k+n2, db_v,
dc_k, dc_v,
tf::cuda_less<T>{},
buf
);
stream.synchronize();
// --------------------------------------------------------------------------
// verify the result
// --------------------------------------------------------------------------
REQUIRE(std::is_sorted(dc_k, dc_k+n1+n2));
for(int i=0; i<n1+n2; i++) {
REQUIRE(map.find(dc_k[i]) != map.end());
REQUIRE(dc_v[i] == map[dc_k[i]]);
}
// --------------------------------------------------------------------------
// deallocate the memory
// --------------------------------------------------------------------------
REQUIRE(cudaFree(da_k) == cudaSuccess);
REQUIRE(cudaFree(da_v) == cudaSuccess);
REQUIRE(cudaFree(db_k) == cudaSuccess);
REQUIRE(cudaFree(db_v) == cudaSuccess);
REQUIRE(cudaFree(dc_k) == cudaSuccess);
REQUIRE(cudaFree(dc_v) == cudaSuccess);
REQUIRE(cudaFree(buf) == cudaSuccess);
});
}
}
executor.run(taskflow).wait();
}
TEST_CASE("cuda_merge_by_key.int" * doctest::timeout(300)) {
cuda_merge_by_key<int>();
}
TEST_CASE("cuda_merge_by_key.float" * doctest::timeout(300)) {
cuda_merge_by_key<float>();
}
|