1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
#define DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN
#include <doctest.h>
#include <taskflow/taskflow.hpp>
#include <taskflow/cuda/cudaflow.hpp>
TEST_CASE("cuda.version" * doctest::timeout(300) ) {
REQUIRE(tf::cuda_get_driver_version() > 0);
REQUIRE(tf::cuda_get_runtime_version() > 0);
}
TEST_CASE("cuda.device" * doctest::timeout(300) ) {
REQUIRE(tf::cuda_get_num_devices() > 0);
REQUIRE(tf::cuda_get_device() >= 0);
size_t num_devices = tf::cuda_get_num_devices();
for(size_t c=0; c<num_devices; c++) {
tf::cuda_set_device(c);
REQUIRE(tf::cuda_get_device() == c);
for(size_t d=0; d<num_devices; d++) {
REQUIRE(tf::cuda_get_device_max_threads_per_block(d) > 0);
REQUIRE(tf::cuda_get_device_max_x_dim_per_block(d) > 0);
REQUIRE(tf::cuda_get_device_max_y_dim_per_block(d) > 0);
REQUIRE(tf::cuda_get_device_max_z_dim_per_block(d) > 0);
REQUIRE(tf::cuda_get_device_max_x_dim_per_grid(d) > 0);
REQUIRE(tf::cuda_get_device_max_y_dim_per_grid(d) > 0);
REQUIRE(tf::cuda_get_device_max_z_dim_per_grid(d) > 0);
REQUIRE(tf::cuda_get_device_warp_size(d) > 0);
REQUIRE(tf::cuda_get_device_max_shm_per_block(d) > 0);
REQUIRE(tf::cuda_get_device_compute_capability_major(d) > 0);
REQUIRE(tf::cuda_get_device_compute_capability_minor(d) >= 0);
REQUIRE_NOTHROW(tf::cuda_get_device_unified_addressing(d));
}
}
// going back to device 0
tf::cuda_set_device(0);
}
// ----------------------------------------------------------------------------
// stream
// ----------------------------------------------------------------------------
TEST_CASE("cudaStream" * doctest::timeout(300)) {
// create a new stream s1 inside
tf::cudaStream s1;
// create another stream s2 from the outside
cudaStream_t s2_source;
cudaStreamCreate(&s2_source);
tf::cudaStream s2(s2_source);
REQUIRE(s2 == s2_source);
cudaStream_t s1_source = s1;
REQUIRE(s1 == s1_source);
// query status
REQUIRE(cudaStreamQuery(s1) == cudaSuccess);
REQUIRE(cudaStreamQuery(s2) == cudaSuccess);
s1 = std::move(s2);
REQUIRE(s2 == nullptr);
REQUIRE(s1 == s2_source);
REQUIRE(cudaStreamQuery(s1) == cudaSuccess);
}
// ----------------------------------------------------------------------------
// event
// ----------------------------------------------------------------------------
TEST_CASE("cudaEvent" * doctest::timeout(300)) {
// create a new event e1 inside
tf::cudaEvent e1;
// create another event e2 from the outside
cudaEvent_t e2_source;
cudaEventCreate(&e2_source);
tf::cudaEvent e2(e2_source);
REQUIRE(e2 == e2_source);
cudaEvent_t e1_source = e1;
REQUIRE(e1 == e1_source);
// query status
REQUIRE(cudaEventQuery(e1) == cudaSuccess);
REQUIRE(cudaEventQuery(e2) == cudaSuccess);
e1 = std::move(e2);
REQUIRE(e2 == nullptr);
REQUIRE(e1 == e2_source);
REQUIRE(cudaEventQuery(e1) == cudaSuccess);
REQUIRE(cudaEventQuery(e2) != cudaSuccess);
}
// ----------------------------------------------------------------------------
// CUDA Graph
// ----------------------------------------------------------------------------
TEST_CASE("cudaGraph" * doctest::timeout(300)) {
// create a new graph g1 inside
tf::cudaGraph g1;
cudaGraph_t g1_source = g1;
REQUIRE(g1 == g1_source);
// create another graph g2 from the outside
cudaGraph_t g2_source;
cudaGraphCreate(&g2_source, 0);
tf::cudaGraph g2(g2_source);
REQUIRE(g2 == g2_source);
g1 = std::move(g2);
REQUIRE(g2 == nullptr);
REQUIRE(g1 == g2_source);
// reassign g1 (now holding g2_source) to g2
g2.reset(g1.release());
REQUIRE(g1 == nullptr);
REQUIRE(g2 == g2_source);
// clear
g2.clear();
g1.clear();
REQUIRE(g1 == nullptr);
REQUIRE(g2 == nullptr);
}
|