1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
#define DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN
#include <doctest.h>
#include <taskflow/taskflow.hpp>
#include <taskflow/cuda/cudaflow.hpp>
#include <taskflow/cuda/algorithm/scan.hpp>
// ----------------------------------------------------------------------------
// cuda_scan
// ----------------------------------------------------------------------------
template <typename T>
void cuda_scan() {
tf::Taskflow taskflow;
tf::Executor executor;
for(int n=0; n<=1234567; n = (n<=100) ? n+1 : n*2 + 1) {
taskflow.emplace([n](){
auto data1 = tf::cuda_malloc_shared<int>(n);
auto data2 = tf::cuda_malloc_shared<int>(n);
auto scan1 = tf::cuda_malloc_shared<int>(n);
auto scan2 = tf::cuda_malloc_shared<int>(n);
// --------------------------------------------------------------------------
// inclusive/exclusive scan
// --------------------------------------------------------------------------
// initialize the data
std::iota(data1, data1 + n, 0);
std::iota(data2, data2 + n, 0);
tf::cudaStream stream;
tf::cudaDefaultExecutionPolicy policy(stream);
// declare the buffer
void* buff;
cudaMalloc(&buff, policy.scan_bufsz<int>(n));
// create inclusive and exclusive scan tasks
tf::cuda_inclusive_scan(policy, data1, data1+n, scan1, tf::cuda_plus<int>{}, buff);
tf::cuda_exclusive_scan(policy, data2, data2+n, scan2, tf::cuda_plus<int>{}, buff);
stream.synchronize();
// inspect
for(int i=1; i<n; i++) {
REQUIRE(scan1[i] == (scan1[i-1] + data1[i]));
REQUIRE(scan2[i] == (scan2[i-1] + data2[i-1]));
}
// deallocate the data
REQUIRE(cudaFree(data1) == cudaSuccess);
REQUIRE(cudaFree(data2) == cudaSuccess);
REQUIRE(cudaFree(scan1) == cudaSuccess);
REQUIRE(cudaFree(scan2) == cudaSuccess);
REQUIRE(cudaFree(buff) == cudaSuccess);
});
}
executor.run(taskflow).wait();
}
TEST_CASE("cuda_scan.int" * doctest::timeout(300)) {
cuda_scan<int>();
}
// ----------------------------------------------------------------------------
// transform_scan
// ----------------------------------------------------------------------------
template <typename T>
void cuda_transform_scan() {
tf::Taskflow taskflow;
tf::Executor executor;
for(int n=0; n<=1234567; n = (n<=100) ? n+1 : n*2 + 1) {
taskflow.emplace([n](){
auto data1 = tf::cuda_malloc_shared<int>(n);
auto data2 = tf::cuda_malloc_shared<int>(n);
auto scan1 = tf::cuda_malloc_shared<int>(n);
auto scan2 = tf::cuda_malloc_shared<int>(n);
// --------------------------------------------------------------------------
// inclusive/exclusive scan
// --------------------------------------------------------------------------
tf::cudaStream stream;
tf::cudaDefaultExecutionPolicy policy(stream);
// declare the buffer
void* buff;
cudaMalloc(&buff, policy.scan_bufsz<int>(n));
// initialize the data
std::iota(data1, data1 + n, 0);
std::iota(data2, data2 + n, 0);
// transform inclusive scan
tf::cuda_transform_inclusive_scan(policy,
data1, data1+n, scan1, tf::cuda_plus<int>{},
[] __device__ (int a) { return a*10; },
buff
);
// transform exclusive scan
tf::cuda_transform_exclusive_scan(policy,
data2, data2+n, scan2, tf::cuda_plus<int>{},
[] __device__ (int a) { return a*11; },
buff
);
stream.synchronize();
// inspect
for(int i=1; i<n; i++) {
REQUIRE(scan1[i] == scan1[i-1] + data1[i] * 10);
REQUIRE(scan2[i] == scan2[i-1] + data2[i-1] * 11);
}
// deallocate the data
REQUIRE(cudaFree(data1) == cudaSuccess);
REQUIRE(cudaFree(data2) == cudaSuccess);
REQUIRE(cudaFree(scan1) == cudaSuccess);
REQUIRE(cudaFree(scan2) == cudaSuccess);
REQUIRE(cudaFree(buff) == cudaSuccess);
});
}
executor.run(taskflow).wait();
}
TEST_CASE("cuda_transform_scan.int" * doctest::timeout(300)) {
cuda_transform_scan<int>();
}
|