1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
#define DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN
#include <doctest.h>
#include <taskflow/taskflow.hpp>
// EmptyFuture
TEST_CASE("EmptyFuture" * doctest::timeout(300)) {
tf::Future<void> fu;
REQUIRE(fu.valid() == false);
REQUIRE(fu.cancel() == false);
}
// Future
TEST_CASE("Future" * doctest::timeout(300)) {
tf::Taskflow taskflow;
tf::Executor executor(4);
std::atomic<int> counter{0};
for(int i=0; i<100; i++) {
taskflow.emplace([&](){
counter.fetch_add(1, std::memory_order_relaxed);
});
}
auto fu = executor.run(taskflow);
fu.get();
REQUIRE(counter == 100);
}
// Cancel
TEST_CASE("BasicCancellation" * doctest::timeout(300)) {
tf::Taskflow taskflow;
tf::Executor executor(4);
std::atomic<int> counter{0};
// artificially long (possible larger than 300 seconds)
for(int i=0; i<10000; i++) {
taskflow.emplace([&](){
std::this_thread::sleep_for(std::chrono::milliseconds(100));
counter.fetch_add(1, std::memory_order_relaxed);
});
}
// a new round
counter = 0;
auto fu = executor.run(taskflow);
REQUIRE(fu.cancel() == true);
fu.get();
REQUIRE(counter < 10000);
// a new round
counter = 0;
fu = executor.run_n(taskflow, 100);
REQUIRE(fu.cancel() == true);
fu.get();
REQUIRE(counter < 10000);
}
// multiple cnacels
TEST_CASE("MultipleCancellations" * doctest::timeout(300)) {
tf::Taskflow taskflow1, taskflow2, taskflow3, taskflow4;
tf::Executor executor(4);
std::atomic<int> counter{0};
// artificially long (possible larger than 300 seconds)
for(int i=0; i<10000; i++) {
taskflow1.emplace([&](){
std::this_thread::sleep_for(std::chrono::milliseconds(100));
counter.fetch_add(1, std::memory_order_relaxed);
});
taskflow2.emplace([&](){
std::this_thread::sleep_for(std::chrono::milliseconds(100));
counter.fetch_add(1, std::memory_order_relaxed);
});
taskflow3.emplace([&](){
std::this_thread::sleep_for(std::chrono::milliseconds(100));
counter.fetch_add(1, std::memory_order_relaxed);
});
taskflow4.emplace([&](){
std::this_thread::sleep_for(std::chrono::milliseconds(100));
counter.fetch_add(1, std::memory_order_relaxed);
});
}
// a new round
counter = 0;
auto fu1 = executor.run(taskflow1);
auto fu2 = executor.run(taskflow2);
auto fu3 = executor.run(taskflow3);
auto fu4 = executor.run(taskflow4);
REQUIRE(fu1.cancel() == true);
REQUIRE(fu2.cancel() == true);
REQUIRE(fu3.cancel() == true);
REQUIRE(fu4.cancel() == true);
executor.wait_for_all();
REQUIRE(counter < 10000);
REQUIRE(fu1.wait_for(std::chrono::milliseconds(0)) == std::future_status::ready);
REQUIRE(fu2.wait_for(std::chrono::milliseconds(0)) == std::future_status::ready);
REQUIRE(fu3.wait_for(std::chrono::milliseconds(0)) == std::future_status::ready);
REQUIRE(fu4.wait_for(std::chrono::milliseconds(0)) == std::future_status::ready);
}
// Cancel linear chain
//TEST_CASE("CancelLinearChain" * doctest::timeout(300)) {
//
// tf::Taskflow taskflow;
// tf::Executor executor(4);
// tf::Future<void>* future;
//
// std::atomic<int> counter{0};
// tf::Task prev, curr;
//
// for(int i=0; i<10000; i++) {
// curr = taskflow.emplace([&, i](){
// counter.fetch_add(1, std::memory_order_relaxed);
// if(i == 5000) {
// future->cancel();
// }
// });
// if(i) {
// prev.precede(curr);
// }
// prev = curr;
// }
//
// future = executor.run(taskflow);
// future->wait();
//}
// cancel subflow
TEST_CASE("CancelSubflow" * doctest::timeout(300)) {
tf::Taskflow taskflow;
tf::Executor executor(4);
std::atomic<int> counter{0};
// artificially long (possible larger than 300 seconds)
for(int i=0; i<100; i++) {
taskflow.emplace([&, i](tf::Subflow& sf){
for(int j=0; j<100; j++) {
sf.emplace([&](){
std::this_thread::sleep_for(std::chrono::milliseconds(100));
counter.fetch_add(1, std::memory_order_relaxed);
});
}
if(i % 2) {
sf.join();
}
else {
sf.detach();
}
});
}
// a new round
counter = 0;
auto fu = executor.run(taskflow);
REQUIRE(fu.cancel() == true);
fu.get();
REQUIRE(counter < 10000);
// a new round
counter = 0;
auto fu1 = executor.run(taskflow);
auto fu2 = executor.run(taskflow);
auto fu3 = executor.run(taskflow);
REQUIRE(fu1.cancel() == true);
REQUIRE(fu2.cancel() == true);
REQUIRE(fu3.cancel() == true);
fu1.get();
fu2.get();
fu3.get();
REQUIRE(counter < 10000);
}
// cancel infinite loop
TEST_CASE("CancelInfiniteLoop" * doctest::timeout(300)) {
tf::Taskflow taskflow;
tf::Executor executor(4);
for(int i=0; i<100; i++) {
auto a = taskflow.emplace([](){});
auto b = taskflow.emplace([](){ return 0; });
a.precede(b);
b.precede(b);
}
auto fu = executor.run(taskflow);
REQUIRE(fu.cancel() == true);
fu.get();
}
// cancel from another
TEST_CASE("CancelFromAnother" * doctest::timeout(300)) {
tf::Taskflow taskflow, another;
tf::Executor executor(4);
// create a single inifnite loop
auto a = taskflow.emplace([](){});
auto b = taskflow.emplace([](){ return 0; });
a.precede(b);
b.precede(b);
auto fu = executor.run(taskflow);
REQUIRE(fu.wait_for(
std::chrono::milliseconds(100)) == std::future_status::timeout
);
// create a task to cancel another flow
another.emplace([&]() { REQUIRE(fu.cancel() == true); });
executor.run(another).wait();
}
// cancel from async task
TEST_CASE("CancelFromAsync" * doctest::timeout(300)) {
tf::Taskflow taskflow;
tf::Executor executor(4);
// create a single inifnite loop
auto a = taskflow.emplace([](){});
auto b = taskflow.emplace([&](){ return 0; });
a.precede(b);
b.precede(b);
executor.async([&](){
auto fu = executor.run_n(taskflow, 100);
std::this_thread::sleep_for(std::chrono::milliseconds(100));
REQUIRE(fu.cancel() == true);
});
executor.wait_for_all();
}
// cancel composition tasks
TEST_CASE("CancelComposition") {
tf::Executor executor(4);
// f1 has two independent tasks
tf::Taskflow f1("F1");
auto f1A = f1.emplace([&](){ });
auto f1B = f1.emplace([&](){ });
f1A.name("f1A");
f1B.name("f1B");
// f2A ---
// |----> f2C
// f2B ---
//
// f1_module_task
tf::Taskflow f2("F2");
auto f2A = f2.emplace([&](){ });
auto f2B = f2.emplace([&](){ });
auto f2C = f2.emplace([&](){ });
f2A.name("f2A");
f2B.name("f2B");
f2C.name("f2C");
f2A.precede(f2C);
f2B.precede(f2C);
f2.composed_of(f1).name("module_of_f1");
// f3 has a module task (f2) and a regular task
tf::Taskflow f3("F3");
f3.composed_of(f2).name("module_of_f2");
f3.emplace([](){ }).name("f3A");
// f4: f3_module_task -> f2_module_task
tf::Taskflow f4;
f4.name("F4");
auto f3_module_task = f4.composed_of(f3).name("module_of_f3");
auto f2_module_task = f4.composed_of(f2).name("module_of_f2");
f3_module_task.precede(f2_module_task);
std::vector<tf::Future<void>> futures;
for(int r=0; r<100; r++) {
size_t N = 100;
size_t success = 0;
futures.clear();
for(int i=0; i<100; i++) {
futures.emplace_back(executor.run(f4));
}
for(auto& fu: futures) {
success += (fu.cancel() ? 1 : 0);
}
executor.wait_for_all();
REQUIRE(success <= N);
}
}
|