1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
import unittest
import TasmanianSG
import sys, os
import numpy as np
class TestTasCommon(unittest.TestCase):
'''
The class contains functions and untilities that will be used in many
places throughout the testing suite. The class needs to run a "dummy"
test from within the class constructor, otherwise an object cannot
be initialized from outside of this module.
'''
def __init__(self):
unittest.TestCase.__init__(self, "testNothing")
def testNothing(self):
pass
def compareGrids(self, gridA, gridB, bTestRuleNames = True):
'''
Compaes two grids by checking points, weights, and several evaluate.
The evaluates are done on a canonical [-1, 1] interval.
The test passes if the grids are mathematically idential.
bTestRuleNames should be True in most cases, i.e., check if the names
of the rule in each grid matches. The exception is when comparing the
GaussPatterson grids build with custom file and sRule = "gauss-patterson"
'''
# test basic number of points data
self.assertEqual(gridA.getNumDimensions(), gridB.getNumDimensions(), "error in getNumDimensions()")
self.assertEqual(gridA.getNumOutputs(), gridB.getNumOutputs(), "error in getNumOutputs()")
self.assertEqual(gridA.getNumPoints(), gridB.getNumPoints(), "error in getNumPoints()")
self.assertEqual(gridA.getNumLoaded(), gridB.getNumLoaded(), "error in getNumLoaded()")
self.assertEqual(gridA.getNumNeeded(), gridB.getNumNeeded(), "error in getNumNeeded()")
self.assertEqual(gridA.isUsingConstruction(), gridB.isUsingConstruction(), "error in isUsingConstruction()")
if (gridA.getNumPoints() == 0): # emptry grid, nothing else to check
return
# load test points (canonical domain only), make sure to avoid grid points, e.g., 1/2, 1/4, etc.
if (gridA.getNumDimensions() == 1):
mX1 = np.array([1.0/3.0])
mX2 = np.array([-1.0/3.0])
mX3 = np.array([-1.0/5.0])
mX4 = np.array([1.0/7.0])
mX5 = np.array([-1.0/7.0])
elif (gridA.getNumDimensions() == 2):
mX1 = np.array([1.0/3.0, 1.0/6.0])
mX2 = np.array([-1.0/3.0, 1.0/6.0])
mX3 = np.array([-1.0/5.0, -1.0/7.0])
mX4 = np.array([1.0/7.0, 1.0/5.0])
mX5 = np.array([-1.0/7.0, -1.0/13.0])
elif (gridA.getNumDimensions() == 3):
mX1 = np.array([1.0/3.0, 1.0/6.0, -1.0/5.0])
mX2 = np.array([-1.0/3.0, 1.0/6.0, 1.0/6.0])
mX3 = np.array([-1.0/5.0, -1.0/7.0, 1.0/3.0])
mX4 = np.array([1.0/7.0, 1.0/5.0, 2.0/3.0])
mX5 = np.array([-1.0/7.0, -1.0/13.0, -2.0/3.0])
aBatchPoints = np.row_stack([mX1, mX2, mX3, mX4, mX5])
pA = gridA.getPoints()
pB = gridB.getPoints()
np.testing.assert_equal(pA, pB, "Points not equal", True)
pA = gridA.getLoadedPoints()
pB = gridB.getLoadedPoints()
np.testing.assert_equal(pA, pB, "Loaded not equal", True)
pA = gridA.getNeededPoints()
pB = gridB.getNeededPoints()
np.testing.assert_equal(pA, pB, "Needed not equal", True)
# test rule data
self.assertEqual(gridA.getAlpha(), gridB.getAlpha(), "error in getAlpha()")
self.assertEqual(gridA.getBeta(), gridB.getBeta(), "error in getBeta()")
self.assertEqual(gridA.getOrder(), gridB.getOrder(), "error in getOrder()")
if (bTestRuleNames):
self.assertEqual(gridA.getRule(), gridB.getRule(), "error in getRule()")
self.assertEqual(gridA.getCustomRuleDescription(), gridB.getCustomRuleDescription(), "error in getCustomRuleDescription()")
self.assertEqual(gridA.isGlobal(), gridB.isGlobal(), "error in isGlobal()")
self.assertEqual(gridA.isSequence(), gridB.isSequence(), "error in isSequence()")
self.assertEqual(gridA.isLocalPolynomial(), gridB.isLocalPolynomial(), "error in isLocalPolynomial()")
self.assertEqual(gridA.isWavelet(), gridB.isWavelet(), "error in isWavelet()")
self.assertEqual(gridA.isFourier(), gridB.isFourier(), "error in isFourier()")
# weights
pA = gridA.getQuadratureWeights()
pB = gridB.getQuadratureWeights()
np.testing.assert_almost_equal(pA, pB, 14, "Quadrature not equal", True)
pA = gridA.getInterpolationWeights(mX1)
pB = gridB.getInterpolationWeights(mX1)
np.testing.assert_almost_equal(pA, pB, 14, "Interpolation test 1 not equal", True)
pA = gridA.getInterpolationWeights(mX2)
pB = gridB.getInterpolationWeights(mX2)
np.testing.assert_almost_equal(pA, pB, 14, "Interpolation test 2 not equal", True)
pA = gridA.getInterpolationWeights(mX3)
pB = gridB.getInterpolationWeights(mX3)
np.testing.assert_almost_equal(pA, pB, 14, "Interpolation test 3 not equal", True)
# evaluate (values have been loaded)
if (gridA.getNumLoaded() > 0):
pA = gridA.evaluate(mX4)
pB = gridB.evaluate(mX4)
np.testing.assert_almost_equal(pA, pB, 12, "Interpolation test 4 not equal", True)
pA = gridA.evaluate(mX5)
pB = gridB.evaluate(mX5)
np.testing.assert_almost_equal(pA, pB, 12, "Interpolation test 5 not equal", True)
pA = gridA.integrate()
pB = gridB.integrate()
np.testing.assert_almost_equal(pA, pB, 12, "Integration test not equal", True)
pA = gridA.evaluateBatch(aBatchPoints)
pB = gridB.evaluateBatch(aBatchPoints)
np.testing.assert_almost_equal(pA, pB, 12, "Interpolation test 6 (batch) not equal", True)
pA = gridA.getHierarchicalCoefficients()
pB = gridB.getHierarchicalCoefficients()
np.testing.assert_almost_equal(pA, pB, 12, "getHierarchicalCoefficients() not equal", True)
# domain transforms
self.assertEqual(gridA.isSetDomainTransfrom(), gridB.isSetDomainTransfrom(), "error in isSetDomainTransfrom()")
pA = gridA.getDomainTransform()
pB = gridB.getDomainTransform()
np.testing.assert_equal(pA, pB, "Domain test no equal", True)
self.assertEqual(gridA.isSetConformalTransformASIN(), gridB.isSetConformalTransformASIN(), "error in isSetConformalTransformASIN()")
pA = gridA.getLevelLimits()
pB = gridB.getLevelLimits()
np.testing.assert_equal(pA, pB, "Level limit test no equal", True)
pA = gridA.getConformalTransformASIN()
pB = gridB.getConformalTransformASIN()
np.testing.assert_equal(pA, pB, "Conformal transform ASIN not equal", True)
def compareCustomTabulated(self, ctA, ctB):
'''
Compaes two CustomTabulated instances by checking nodes, weights, and other metadata.
The test passes if the two instances are mathematically identical.
'''
# Test metadata.
self.assertEqual(ctA.getDescription(), ctB.getDescription(), "error in getDescription()")
self.assertEqual(ctA.getNumLevels(), ctB.getNumLevels(), "error in getNumLevels()")
for level in range(ctA.getNumLevels()):
self.assertEqual(ctA.getNumPoints(level), ctB.getNumPoints(level), "error in getNumPoints() at level " + str(level))
self.assertEqual(ctA.getIExact(level), ctB.getIExact(level), "error in getIExact() at level " + str(level))
self.assertEqual(ctA.getQExact(level), ctB.getQExact(level), "error in getQExact() at level " + str(level))
wA, nA = ctA.getWeightsNodes(level)
wB, nB = ctB.getWeightsNodes(level)
np.testing.assert_equal(wA, wB, "Weights from getWeightsNodes() are not equal at level " + str(level), True)
np.testing.assert_equal(nA, nB, "Nodes from getWeightsNodes() are not equal at level " + str(level), True)
def loadExpN2(self, grid):
'''
If there are needed points, load the points with exp(-sum(x)**2) where
x is each of the needed points.
The function is needed to test whether read/write correctly works on the
loaded values, so some values have to be easily loaded even if they
are not meaningful as in the convergence/correctness tests.
'''
if (grid.getNumNeeded() == 0): return
mPoints = grid.getNeededPoints()
iOut = grid.getNumOutputs()
iDim = grid.getNumDimensions()
grid.loadNeededPoints(np.column_stack([np.exp(-np.sum(mPoints**2, axis=1)) for i in range(iOut)]))
def checkPoints(self, aPoints, lMustHave, lMustNotHave):
'''
aPoints is 1D array of points
lMustHave and lMustNotHave are the points to test
Example: checkPoints(aPoints[:,0], [0.0, 1.0, -1.0], [0.5, -0.5])
'''
for x in lMustHave:
self.assertTrue((np.sum(np.where(np.abs(aPoints - x) < 0.001, 1, 0)) > 0), 'did not properly limit level, did not find {0:1.5e}'.format(x))
for x in lMustNotHave:
self.assertTrue((np.sum(np.where(np.abs(aPoints - x) < 0.001, 1, 0)) == 0), 'did not properly limit level, did find {0:1.5e}'.format(x))
|