1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
# Copyright (c) 2022, Miroslav Stoyanov & Weiwei Kong
#
# This file is part of
# Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
#
# Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
# conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
# and the following disclaimer in the documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
# or promote products derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
# INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
# IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
# OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND
# IMPLIED. THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF
# THE SOFTWARE WILL NOT INFRINGE ANY PATENT, COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL
# ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE. THE USER ASSUMES
# RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING
# FROM OR ARISING OUT OF, IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
import unittest
import Tasmanian
DREAM = Tasmanian.DREAM
Opt = Tasmanian.Optimization
import os
import numpy as np
import testCommon
ttc = testCommon.TestTasCommon()
class TestTasClass(unittest.TestCase):
'''
Tests for the Tasmanian Optimization python bindings module
'''
def __init__(self):
unittest.TestCase.__init__(self, "testNothing")
def testNothing(self):
pass
def checkParticleSwarmState(self):
iNumDimensions = 2
iNumParticles = 5
# Initialization tests.
state = Opt.ParticleSwarmState(iNumDimensions, iNumParticles)
self.assertEqual(iNumDimensions, state.getNumDimensions())
self.assertEqual(iNumParticles, state.getNumParticles())
self.assertFalse(state.isPositionInitialized())
self.assertFalse(state.isVelocityInitialized())
self.assertFalse(state.isBestPositionInitialized())
self.assertFalse(state.isCacheInitialized())
# Loading/Unloading tests.
pp = np.arange(iNumParticles * iNumDimensions, dtype=np.float64).reshape(iNumParticles, iNumDimensions)
state.setParticlePositions(pp)
self.assertTrue(state.isPositionInitialized())
np.testing.assert_array_equal(pp, state.getParticlePositions())
pv = np.arange(iNumParticles * iNumDimensions, dtype=np.float64).reshape(iNumParticles, iNumDimensions)
state.setParticleVelocities(pv)
np.testing.assert_array_equal(pv, state.getParticleVelocities())
bpp = np.arange((iNumParticles+1) * iNumDimensions, dtype=np.float64).reshape(iNumParticles+1, iNumDimensions)
state.setBestParticlePositions(bpp)
self.assertTrue(state.isBestPositionInitialized())
np.testing.assert_array_equal(bpp, state.getBestParticlePositions())
state.clearBestParticles()
self.assertFalse(state.isBestPositionInitialized())
np.testing.assert_array_equal(np.zeros([iNumParticles + 1, iNumDimensions]), state.getBestParticlePositions())
# Generation tests.
state = Opt.ParticleSwarmState(iNumDimensions, iNumParticles)
state.initializeParticlesInsideBox(np.array([-1.0, 1.0]), np.array([2.0, 3.0]),
random01=DREAM.RandomGenerator(sType="default", iSeed=777))
self.assertTrue(state.isPositionInitialized())
self.assertTrue(state.isVelocityInitialized())
pp = state.getParticlePositions()
self.assertTrue(np.all((-1.0 <= pp[:,0]) & (pp[:,0] <= 2.0)))
self.assertTrue(np.all((1.0 <= pp[:,1]) & (pp[:,1] <= 3.0)))
def checkParticleSwarm(self):
iNumDimensions = 2
iNumParticles = 50
state = Opt.ParticleSwarmState(iNumDimensions, iNumParticles)
state.initializeParticlesInsideBox(np.array([-3.0, -2.0]), np.array([3.0, 2.0]),
random01=DREAM.RandomGenerator(sType="default", iSeed=777))
# Six-hump-camel function.
shc = lambda x : (4 - 2.1*x[0]*x[0] + x[0]*x[0]*x[0]*x[0]/3)*x[0]*x[0] + x[0]*x[1] + (-4.0 + 4.0*x[1]*x[1])*x[1]*x[1]
f = lambda x_batch : np.apply_along_axis(shc, 1, x_batch)
inside = lambda x : bool((-3 <= x[0]) and (x[0] <= 3) and (-2 <= x[1]) and (x[1] <= 2))
# Main call + tests.
Opt.ParticleSwarm(f, inside, 0.5, 2, 2, 1, state, random01=DREAM.RandomGenerator(sType="default", iSeed=777))
self.assertTrue(state.isCacheInitialized())
state.clearCache()
self.assertFalse(state.isCacheInitialized())
iNumIterations = 200
Opt.ParticleSwarm(f, inside, 0.5, 2, 2, iNumIterations, state)
self.assertTrue(np.allclose(np.array([-0.08984201368301331, +0.7126564032704135]), state.getBestPosition()) or
np.allclose(np.array([+0.08984201368301331, -0.7126564032704135]), state.getBestPosition()) )
def checkGradientDescentState(self):
x0 = np.array([0.0, 1.0])
stepsize = 2.0;
# Initialization tests.
state = Opt.GradientDescentState(x0, stepsize)
self.assertEqual(len(x0), state.getNumDimensions())
np.testing.assert_array_equal(x0, state.getX())
self.assertEqual(stepsize, state.getAdaptiveStepsize())
# Loading/Unloading tests.
x1 = np.array([3.0, 4.0])
state.setX(x1)
np.testing.assert_array_equal(x1, state.getX())
state.setAdaptiveStepsize(5.0)
self.assertEqual(5.0, state.getAdaptiveStepsize())
def checkGradientDescent(self):
func = lambda x : 2.0 * x[0] * x[0] + x[1] * x[1] / 2.0
grad = lambda x : np.array([4.0 * x[0], x[1]])
lambda0 = 3.0
xBar = np.array([0.0, 0.0])
xBarConstr = np.array([-0.5, 0.5])
tol = 1E-6
iter_limit = 100
# Main call + tests.
state = Opt.GradientDescentState(np.array([-1.0, 1.0]), lambda0)
result = Opt.GradientDescent(grad, 1/4.0, iter_limit, tol, state)
self.assertLessEqual(result['performed_iterations'], iter_limit)
self.assertTrue(np.allclose(xBar, state.getX(), atol=tol * 10))
self.assertEqual(lambda0, state.getAdaptiveStepsize())
state = Opt.GradientDescentState(np.array([-1.0, 1.0]), lambda0)
result = Opt.AdaptiveGradientDescent(func, grad, 1.25, 1.25, iter_limit, tol, state)
self.assertLessEqual(result['performed_iterations'], iter_limit)
self.assertTrue(np.allclose(xBar, state.getX(), atol=tol * 10))
proj = lambda x : np.array([min(max(-3.0, x[0]), -0.5), min(max(0.5, x[1]), 3.0)])
state = Opt.GradientDescentState(np.array([-2.0, 2.0]), lambda0)
result = Opt.AdaptiveProjectedGradientDescent(func, grad, proj, 1.25, 1.25, iter_limit, tol, state)
self.assertLessEqual(result['performed_iterations'], iter_limit)
self.assertTrue(np.allclose(xBarConstr, state.getX(), atol=tol))
def performOptTests(self):
self.checkParticleSwarmState()
self.checkParticleSwarm()
self.checkGradientDescentState()
self.checkGradientDescent()
if __name__ == "__main__":
tester = TestTasClass()
tester.performOptTests()
|