1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
import unittest
import TasmanianSG
import numpy as np
from random import shuffle
import testCommon
ttc = testCommon.TestTasCommon()
class TestTasClass(unittest.TestCase):
'''
Test the refinement capabilities:
* set different refinements
* estimate anisotropic coefficients
* read/write refinements
'''
def __init__(self):
unittest.TestCase.__init__(self, "testNothing")
def testNothing(self):
pass
def checkSetClear(self):
'''
Set refinement and clear refinement
'''
grid = TasmanianSG.TasmanianSparseGrid()
grid.makeLocalPolynomialGrid(2, 1, 2, 1, 'semi-localp')
ttc.loadExpN2(grid)
self.assertEqual(grid.getNumNeeded(), 0, "num needed")
grid.setSurplusRefinement(0.0001, 0, 'classic')
self.assertTrue((grid.getNumNeeded() > 0), "num needed")
grid.clearRefinement()
self.assertEqual(grid.getNumNeeded(), 0, "num needed")
def checkAnisoCoeff(self):
'''
Check anisotropic coefficients
'''
grid = TasmanianSG.TasmanianSparseGrid()
grid.makeGlobalGrid(2, 1, 9, 'level', 'rleja')
aP = grid.getPoints()
aV = np.exp(aP[:,0] + aP[:,1]**2)
grid.loadNeededPoints(aV.reshape([aP.shape[0], 1]))
aC = grid.estimateAnisotropicCoefficients('iptotal', 0)
self.assertEqual(len(aC.shape), 1, 'dimensions of the estimated anisotropic weight')
self.assertEqual(aC.shape[0], 2, 'dimensions of the estimated anisotropic weight')
self.assertLess(np.abs(float(aC[0]) / float(aC[1]) - 2.0), 0.2, 'wrong anisotropic weights estimated')
aC = grid.estimateAnisotropicCoefficients('ipcurved', 0)
self.assertEqual(len(aC.shape), 1, 'dimensions of the estimated anisotropic weight')
self.assertEqual(aC.shape[0], 4, 'dimensions of the estimated anisotropic weight')
self.assertLess(np.abs(float(aC[0]) / float(aC[1]) - 2.0), 0.2, 'wrong anisotropic weights estimated, alpha curved')
self.assertLess(aC[2], 0.0, 'wrong anisotropic weights estimated, beta 1')
self.assertLess(aC[3], 0.0, 'wrong anisotropic weights estimated, beta 2')
def checkLocalpSurplus(self):
'''
Check surplus refinement for local polynomial grids
'''
grid = TasmanianSG.TasmanianSparseGrid()
grid.makeLocalPolynomialGrid(2, 1, 4, 1, 'semi-localp')
ttc.loadExpN2(grid)
aPoints = grid.getPoints()
aScale = np.array([[1.0 if aPoints[i,0] > 0.0 else 0.0] for i in range(aPoints.shape[0])])
grid.setSurplusRefinement(1.E-9, 0, 'classic', [], aScale)
aNeeded = grid.getNeededPoints()
for iI in range(aNeeded.shape[0]):
self.assertLess(0.0, aNeeded[iI, 0], 'wrong set of needed points after rescaling')
def checkFileIO(self):
'''
Read/Write regular refinement.
'''
grid = TasmanianSG.TasmanianSparseGrid()
sRefinementIOGrids = ["grid.makeGlobalGrid(2, 1, 2, 'level', 'clenshaw-curtis')",
"grid.makeSequenceGrid(2, 1, 2, 'level', 'rleja')"]
for sTest in sRefinementIOGrids:
exec(sTest)
ttc.loadExpN2(grid)
grid.setAnisotropicRefinement('iptotal', 20, 0)
self.assertTrue(grid.getNumNeeded() > 0, 'did not refine')
gridB = TasmanianSG.TasmanianSparseGrid()
gridB.copyGrid(grid)
ttc.compareGrids(grid, gridB)
grid.write("refTestFlename.grid", bUseBinaryFormat = True)
gridB.makeLocalPolynomialGrid(1, 1, 0, 1)
gridB.read("refTestFlename.grid")
ttc.compareGrids(grid, gridB)
grid.write("refTestFlename.grid", bUseBinaryFormat = False)
gridB.makeLocalPolynomialGrid(1, 1, 0, 1)
gridB.read("refTestFlename.grid")
ttc.compareGrids(grid, gridB)
def checkConstruction(self):
'''
Test read/write when using construction.
'''
llTest = ["gridA.makeGlobalGrid(3, 2, 2, 'level', 'clenshaw-curtis'); gridB.makeGlobalGrid(3, 2, 2, 'level', 'clenshaw-curtis')",
"gridA.makeSequenceGrid(3, 2, 4, 'level', 'leja'); gridB.makeSequenceGrid(3, 2, 4, 'level', 'leja')",
"gridA.makeLocalPolynomialGrid(3, 2, 2); gridB.makeLocalPolynomialGrid(3, 2, 2)",
"gridA.makeWaveletGrid(3, 2, 2); gridB.makeWaveletGrid(3, 2, 2)",
"gridA.makeFourierGrid(3, 2, 2, 'level'); gridB.makeFourierGrid(3, 2, 2, 'level')",]
for sMakeGrids in llTest:
for sFormat in [False, True]: # test binary and ascii format
gridA = TasmanianSG.TasmanianSparseGrid()
gridB = TasmanianSG.TasmanianSparseGrid()
gridC = TasmanianSG.TasmanianSparseGrid()
exec(sMakeGrids)
gridA.beginConstruction()
gridB.beginConstruction()
#gridA.printStats()
gridB.write("testSave", bUseBinaryFormat = sFormat)
gridB.makeSequenceGrid(1, 1, 0, "level", "rleja") # clean the grid
gridB.read("testSave")
ttc.compareGrids(gridA, gridB)
gridC.copyGrid(gridA)
ttc.compareGrids(gridA, gridC)
for t in range(5): # use 5 iterations
if (gridA.isLocalPolynomial() or gridA.isWavelet()):
aPointsA = gridA.getCandidateConstructionPointsSurplus(1.E-4, "fds")
aPointsB = gridB.getCandidateConstructionPointsSurplus(1.E-4, "fds")
aPointsC = gridC.getCandidateConstructionPointsSurplus(1.E-4, "fds")
else:
aPointsA = gridA.getCandidateConstructionPoints("level", 0)
aPointsB = gridB.getCandidateConstructionPoints("level", 0)
aPointsC = gridC.getCandidateConstructionPoints("level", 0)
np.testing.assert_almost_equal(aPointsA, aPointsB, decimal=11)
np.testing.assert_almost_equal(aPointsA, aPointsC, decimal=11)
iNumPoints = int(aPointsA.shape[0] / 2)
if (iNumPoints > 32): iNumPoints = 32
# use the first samples (up to 32) and shuffle the order
# add one of the samples further in the list
liSamples = list(range(iNumPoints + 1))
shuffle(liSamples)
for iI in range(len(liSamples)):
if (liSamples[iI] == iNumPoints):
liSamples[iI] = iNumPoints + 1
#liSamples = map(lambda i: i if i < iNumPoints else iNumPoints + 1, liSamples)
for iI in liSamples: # compute and load the samples
aPoint = aPointsA[iI, :]
aValue = np.array([np.exp(aPoint[0] + aPoint[1]), 1.0 / ((aPoint[0] - 1.3) * (aPoint[1] - 1.6) * (aPoint[2] - 2.0))])
gridA.loadConstructedPoint(aPoint, aValue)
gridB.loadConstructedPoint(aPoint, aValue)
gridC.loadConstructedPoint(aPoint, aValue)
# using straight construction or read/write should produce the same result
ttc.compareGrids(gridA, gridC)
gridB.write("testSave", bUseBinaryFormat = sFormat)
gridB.makeSequenceGrid(1, 1, 0, "level", "rleja")
gridB.read("testSave")
ttc.compareGrids(gridA, gridB)
gridC.copyGrid(gridA)
ttc.compareGrids(gridA, gridC)
gridA.finishConstruction()
gridB.finishConstruction()
gridB.write("testSave", bUseBinaryFormat = sFormat)
gridB.makeSequenceGrid(1, 1, 0, "level", "rleja")
gridB.read("testSave")
ttc.compareGrids(gridA, gridB)
gridC.copyGrid(gridA)
ttc.compareGrids(gridA, gridC)
# check multi-point load
gridA = TasmanianSG.TasmanianSparseGrid()
gridA.makeLocalPolynomialGrid(3, 2, 4);
ttc.loadExpN2(gridA)
gridB = TasmanianSG.TasmanianSparseGrid()
gridB.makeLocalPolynomialGrid(3, 2, 0)
gridB.beginConstruction()
aX = gridA.getPoints()
aY = gridA.evaluateBatch(aX)
gridB.loadConstructedPoint(aX, aY)
gridB.finishConstruction()
ttc.compareGrids(gridA, gridB)
# check some mem-leaks and crashes (correctness is elsewhere)
gridA = TasmanianSG.TasmanianSparseGrid()
gridA.makeLocalPolynomialGrid(2, 5, 0)
gridA.beginConstruction()
gridA.loadConstructedPoint(np.empty([0, 2]), np.empty([0, 5])) # empty input, check for crash
gridA.makeLocalPolynomialGrid(2, 1, 1)
gridA.loadNeededPoints(np.ones([5, 1]))
gridA.beginConstruction()
aPoints = gridA.getCandidateConstructionPointsSurplus(1.E-4, "classic") # should generate empty output
np.testing.assert_almost_equal(aPoints, np.empty([0, 0]), 14, "failed to generate empty list of construction points", True)
gridA.makeLocalPolynomialGrid(2, 1, 0)
gridA.loadNeededPoints(np.ones([1, 1]))
gridA.beginConstruction()
aPoints = gridA.getCandidateConstructionPointsSurplus(1.E-4, "classic", 0, [], np.array([[1.E-6]])) # should generate empty output
np.testing.assert_almost_equal(aPoints, np.empty([0, 0]), 14, "failed to generate empty list of construction points", True)
gridA.makeGlobalGrid(2, 1, 1, "tensor", "clenshaw-curtis")
gridA.loadNeededPoints(np.ones([9, 1]))
gridA.beginConstruction()
aPoints = gridA.getCandidateConstructionPoints("ipcurved", [5, 5, 2, 2], [1, 1]) # should generate empty output
np.testing.assert_almost_equal(aPoints, np.empty([0, 0]), 14, "failed to generate empty list of construction points", True)
def checkRemovePoints(self):
'''
tests removePointsByHierarchicalCoefficient()
'''
grid = TasmanianSG.makeLocalPolynomialGrid(2, 1, 1)
aPoints = grid.getNeededPoints()
grid.loadNeededValues(np.exp(-aPoints[:,0]**2 -0.5*aPoints[:,1]**2).reshape((grid.getNumNeeded(), 1)))
reduced = TasmanianSG.TasmanianSparseGrid()
reduced.copyGrid(grid)
reduced.removePointsByHierarchicalCoefficient(0.6)
self.assertEqual(reduced.getNumPoints(), 3, "failed to remove points with threshold 0.6")
np.testing.assert_almost_equal(reduced.getLoadedPoints(), np.array([[0.0, 0.0], [-1.0, 0.0], [1.0, 0.0]]), 14, "failed reduce 1", True)
reduced.copyGrid(grid)
reduced.removePointsByHierarchicalCoefficient(0.7)
self.assertEqual(reduced.getNumPoints(), 1, "failed to remove points with threshold 0.7")
np.testing.assert_almost_equal(reduced.getLoadedPoints(), np.array([[0.0, 0.0]]), 14, "failed reduce 2", True)
reduced.copyGrid(grid)
reduced.removePointsByHierarchicalCoefficient(0.0, iNumKeep = 3)
self.assertEqual(reduced.getNumPoints(), 3, "failed to remove points down to 3")
np.testing.assert_almost_equal(reduced.getLoadedPoints(), np.array([[0.0, 0.0], [-1.0, 0.0], [1.0, 0.0]]), 14, "failed reduce 3", True)
reduced.copyGrid(grid)
reduced.removePointsByHierarchicalCoefficient(0.0, iNumKeep = 1)
self.assertEqual(reduced.getNumPoints(), 1, "failed to remove points down to 1")
np.testing.assert_almost_equal(reduced.getLoadedPoints(), np.array([[0.0, 0.0]]), 14, "failed reduce 4", True)
reduced.copyGrid(grid)
reduced.removePointsByHierarchicalCoefficient(0.0, aScaleCorrection = np.array([[1.0], [1.0], [1.0], [0.1], [0.1]]), iNumKeep = 3)
self.assertEqual(reduced.getNumPoints(), 3, "failed to remove corrected points")
np.testing.assert_almost_equal(reduced.getLoadedPoints(), np.array([[0.0, 0.0], [0.0, -1.0], [0.0, 1.0]]), 14, "failed reduce 5", True)
def performRefinementTest(self):
self.checkSetClear()
self.checkAnisoCoeff()
self.checkLocalpSurplus()
self.checkFileIO()
self.checkConstruction()
self.checkRemovePoints()
|