1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
/*
* Copyright (c) 2017, Miroslav Stoyanov
*
* This file is part of
* Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
*
* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
* and the following disclaimer in the documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
* or promote products derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED.
* THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,
* COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.
* THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,
* IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
*/
#include "TasmanianAddons.hpp"
#include "gridtestCLICommon.hpp"
/*!
* \brief Check if the points in the two grids match bit-wise.
*/
inline bool checkPoints(TasGrid::TasmanianSparseGrid const &gridA, TasGrid::TasmanianSparseGrid const &gridB){
if (gridA.getNumPoints() != gridB.getNumPoints()) return false;
if (gridA.getNumDimensions() != gridB.getNumDimensions()) return false;
auto pA = gridA.getPoints();
auto pB = gridB.getPoints();
double err = 0.0;
for(auto x = pA.begin(), y = pB.begin(); x != pA.end(); x++, y++) err += std::abs(*x - *y);
return (err == 0.0); // bit-wise match is reasonable to expect here, but use with caution for some grids
}
/*!
* \brief Simple test of MPI Send/Recv of sparse grids, binary and ascii formats.
*/
template<bool use_binary>
bool testSendReceive(){
MPI_Comm comm = MPI_COMM_WORLD;
auto true_grid = TasGrid::makeGlobalGrid(5, 3, 4, TasGrid::type_level, TasGrid::rule_clenshawcurtis);
int tag = 1;
int const me = TasGrid::getMPIRank(comm);
if (me == 0){
return (TasGrid::MPIGridSend<use_binary>(true_grid, 1, tag, comm) == MPI_SUCCESS);
}else if (me == 1){
MPI_Status status;
TasGrid::TasmanianSparseGrid grid;
auto result = TasGrid::MPIGridRecv<use_binary>(grid, 0, tag, comm, &status);
if (result != MPI_SUCCESS) return false;
return checkPoints(true_grid, grid);
}else{
return true;
}
}
/*!
* \brief Simple test of MPI Send/Recv of sparse grids, binary and ascii formats.
*/
template<bool use_binary>
bool testBcast(){
MPI_Comm comm = MPI_COMM_WORLD;
auto true_grid = TasGrid::makeGlobalGrid(5, 1, 4, TasGrid::type_level, TasGrid::rule_clenshawcurtis);
int const me = TasGrid::getMPIRank(comm);
if (me == 1){ // using proc 1 to Bcast the grid
return (TasGrid::MPIGridBcast<use_binary>(true_grid, 1, comm) == MPI_SUCCESS);
}else{
TasGrid::TasmanianSparseGrid grid;
auto result = TasGrid::MPIGridBcast<use_binary>(grid, 1, comm);
if (result != MPI_SUCCESS) return false;
return checkPoints(true_grid, grid);
}
}
/*!
* \brief Simple test of MPI Scatter Outputs of sparse grids, binary and ascii formats.
*/
template<bool use_binary>
bool testScatterOutputs(){
// grid has 7 outputs split between 3 ranks gives (3 2 2)
MPI_Comm comm = MPI_COMM_WORLD;
int const me = TasGrid::getMPIRank(comm);
auto reference_grid = TasGrid::makeGlobalGrid(3, (me == 0) ? 3 : 2, 4, TasGrid::type_level, TasGrid::rule_clenshawcurtis);
loadNeededPoints<false, false>([&](double const x[], double y[], size_t)->void{
double expval = std::exp(x[0] + x[1] + x[2]); // 3 inputs
if (me == 0){
y[0] = expval;
y[1] = 2.0 * expval;
y[2] = 3.0 * expval;
}else if (me == 1){
y[0] = 4.0 * expval;
y[1] = 5.0 * expval;
}else{
y[0] = 6.0 * expval;
y[1] = 7.0 * expval;
}
}, reference_grid, 0);
TasmanianSparseGrid grid; // received grid
// use rank 1 for the root
if (me == 1){
auto full_grid = TasGrid::makeGlobalGrid(3, 7, 4, TasGrid::type_level, TasGrid::rule_clenshawcurtis);
loadNeededPoints<false, false>([&](double const x[], double y[], size_t)->void{
double expval = std::exp(x[0] + x[1] + x[2]); // 3 inputs
for(size_t i=0; i<7; i++)
y[i] = double(i+1) * expval;
}, full_grid, 0);
MPIGridScatterOutputs<use_binary>(full_grid, grid, 1, 2, comm);
}else{
MPIGridScatterOutputs<use_binary>(TasmanianSparseGrid(), grid, 1, 2, comm);
}
std::minstd_rand park_miller(99);
std::uniform_real_distribution<double> unif(-1.0, 1.0);
std::vector<double> test_points(3 * 1000);
for(auto &t : test_points) t = unif(park_miller);
auto match = [&](TasmanianSparseGrid const &a, TasmanianSparseGrid const &b)->bool{
std::vector<double> resa, resb; // reference and actual result
a.evaluateBatch(test_points, resa);
b.evaluateBatch(test_points, resb);
double err = 0.0;
for(auto ia = resa.begin(), ib = resb.begin(); ia != resa.end(); ia++, ib++)
err = std::max(err, std::abs(*ia - *ib));
return (err < 1.E-13);
};
if (!match(grid, reference_grid)) throw std::runtime_error("ERROR: first iteration of MPIGridScatterOutputs() failed.");
MPIGridScatterOutputs<use_binary>(copyGrid(grid), grid, 1, 2, comm);
if (me == 2){
if (!grid.empty()) throw std::runtime_error("ERROR: second iteration of MPIGridScatterOutputs() failed.");
}else{
reference_grid = TasGrid::makeGlobalGrid(3, 1, 4, TasGrid::type_level, TasGrid::rule_clenshawcurtis);
loadNeededPoints<false, false>([&](double const x[], double y[], size_t)->void{
double expval = std::exp(x[0] + x[1] + x[2]); // 3 inputs
y[0] = ((me == 0) ? 4.0 : 5.0) * expval;
}, reference_grid, 0);
if (!match(grid, reference_grid)) throw std::runtime_error("ERROR: second iteration of MPIGridScatterOutputs() failed.");
}
MPIGridScatterOutputs<use_binary>(copyGrid(grid), grid, 1, 2, comm);
if (me == 0){
reference_grid = TasGrid::makeGlobalGrid(3, 1, 4, TasGrid::type_level, TasGrid::rule_clenshawcurtis);
loadNeededPoints<false, false>([&](double const x[], double y[], size_t)->void{
y[0] = 5.0 * std::exp(x[0] + x[1] + x[2]);
}, reference_grid, 0);
if (!match(grid, reference_grid)) throw std::runtime_error("ERROR: third iteration of MPIGridScatterOutputs() failed.");
}else{
if (!grid.empty()) throw std::runtime_error("ERROR: third iteration of MPIGridScatterOutputs() failed.");
}
return true;
}
template<bool use_initial_guess>
void testMPIconstruct(){
MPI_Comm comm = MPI_COMM_WORLD;
int const me = TasGrid::getMPIRank(comm);
std::minstd_rand park_miller(99);
std::uniform_real_distribution<double> unif(-1.0, 1.0);
std::vector<double> test_points(3 * 1000);
for(auto &t : test_points) t = unif(park_miller);
auto match = [&](TasmanianSparseGrid const &a, TasmanianSparseGrid const &b)->bool{
std::vector<double> resa, resb; // reference and actual result
a.evaluateBatch(test_points, resa);
b.evaluateBatch(test_points, resb);
double err = 0.0;
for(auto ia = resa.begin(), ib = resb.begin(); ia != resa.end(); ia++, ib++)
err = std::max(err, std::abs(*ia - *ib));
constexpr double tolerance = 2.E-2;
if (err >= tolerance) std::cout << "error = " << err << " expected " << tolerance << std::endl;
return (err < tolerance);
};
auto model = [&](std::vector<double> const &x, std::vector<double> &y)->void{
size_t num_samples = x.size() / 3;
if (use_initial_guess == with_initial_guess)
y.resize(num_samples * 2); // y can be empty
for(size_t i=0; i<num_samples; i++){ // for each sample
y[2*i + 0] = std::exp(x[3*i + 0] + x[3*i + 1] + x[3*i + 2]);
y[2*i + 1] = std::sin(x[3*i + 0]) * std::cos(x[3*i + 1]) + std::sin(x[3*i + 2]) * std::cos(x[3*i + 1]);
}
};
auto modelt = [&](std::vector<double> const &x, std::vector<double> &y, size_t)->void{
model(x, y);
};
auto grid = TasGrid::makeLocalPolynomialGrid(3, 2, 3);
if (me == 0){
mpiConstructSurrogate<use_initial_guess>(model, 3, 2, 1000, 2, 3, 11, 22, 0, comm,
grid, 1.E-5, refine_classic, -1);
}else{
mpiConstructWorker<use_initial_guess>(model, 3, 2, 2, 3, 11, 22, 0, comm);
}
if (me == 0){
auto reference_grid = TasGrid::makeLocalPolynomialGrid(3, 2, 3);
constructSurrogate<mode_sequential>(modelt, 1000, 0, 1, reference_grid, 1.E-5, refine_classic, -1);
if (!match(grid, reference_grid)) throw std::runtime_error("testMPIconstruct() grids mismatch.");
}
}
// this test must produce grids that match to within numeric precision
// no matter the order of samples or any other considerations
void testMPIconstructStrict(){
MPI_Comm comm = MPI_COMM_WORLD;
int const me = TasGrid::getMPIRank(comm);
auto match = [](TasmanianSparseGrid const &a, TasmanianSparseGrid const &b)->bool{
if (a.getNumLoaded() != b.getNumLoaded()) return false;
auto pa = a.getLoadedPoints();
auto pb = b.getLoadedPoints();
double err = 0.0;
for(auto ia = pa.begin(), ib = pb.begin(); ia != pa.end(); ia++, ib++)
err = std::max(err, std::abs(*ia - *ib));
if (err >= Maths::num_tol)
cout << "points mismatch: " << err << endl;
return (err < Maths::num_tol);
};
auto modelt = [&](std::vector<double> const &x, std::vector<double> &y, size_t)->void{
size_t num_samples = x.size() / 2;
for(size_t i=0; i<num_samples; i++) // for each sample
y[i] = std::exp(x[2*i] + x[2*i + 1]);
};
auto model = [&](std::vector<double> const &x, std::vector<double> &y)->void{
modelt(x, y, 0);
if (me == 0) throw std::runtime_error("ERROR: rank 0 should not participate in this.");
//std::this_thread::sleep_for(std::chrono::milliseconds(1100));
};
std::vector<int> aweights = {1, 2};
auto reference_grid = TasGrid::makeSequenceGrid(2, 1, 6, TasGrid::type_level, TasGrid::rule_leja, aweights);
auto grid = copyGrid(reference_grid);
loadNeededPoints<mode_sequential>(modelt, reference_grid, 0);
mpiConstructSurrogate<no_initial_guess>
(model, 2, 1, reference_grid.getNumLoaded(), 1, 2, 11, 22, 0, comm, grid, TasGrid::type_iptotal, aweights);
if (me == 0){
if (!match(grid, reference_grid)) throw std::runtime_error("ERROR: CV construction failed.");
}
}
|