File: testMPIDream.hpp

package info (click to toggle)
tasmanian 8.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,852 kB
  • sloc: cpp: 34,523; python: 7,039; f90: 5,080; makefile: 224; sh: 64; ansic: 8
file content (176 lines) | stat: -rw-r--r-- 9,052 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/*
 * Copyright (c) 2017, Miroslav Stoyanov
 *
 * This file is part of
 * Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
 *
 * Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
 *    and the following disclaimer in the documentation and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
 *    or promote products derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED.
 * THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,
 * COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.
 * THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,
 * IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
 */

#include "TasmanianAddons.hpp"
#include "gridtestCLICommon.hpp"

inline bool testLikelySendRecv(){
    int me = TasGrid::getMPIRank(MPI_COMM_WORLD);
    TasDREAM::LikelihoodGaussIsotropic ref_isolike(10.0, {1.0, 2.0, 3.0});

    if (me == 0){
        if (TasDREAM::MPILikelihoodSend(ref_isolike, 1, 11, MPI_COMM_WORLD) != MPI_SUCCESS) return false;
    }else if (me == 1){
        TasDREAM::LikelihoodGaussIsotropic isolike;
        if (TasDREAM::MPILikelihoodRecv(isolike, 0, 11, MPI_COMM_WORLD) != MPI_SUCCESS) return false;
        std::vector<double> model = {1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0}; // full rank matrix to cover all entries
        std::vector<double> result(3), true_result(3);
        isolike.getLikelihood(TasDREAM::logform, model, result);
        ref_isolike.getLikelihood(TasDREAM::logform, model, true_result);
        for(size_t i=0; i<3; i++) if (std::abs(result[i] - true_result[i]) > TasGrid::Maths::num_tol) return false;
    }

    TasDREAM::LikelihoodGaussAnisotropic ref_alike({4.0, 5.0, 6.0}, {1.0, 2.0, 3.0});

    if (me == 1){
        if (TasDREAM::MPILikelihoodSend(ref_alike, 2, 12, MPI_COMM_WORLD) != MPI_SUCCESS) return false;
    }else if (me == 2){
        TasDREAM::LikelihoodGaussAnisotropic alike;
        if (TasDREAM::MPILikelihoodRecv(alike, 1, 12, MPI_COMM_WORLD) != MPI_SUCCESS) return false;
        std::vector<double> model = {1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0}; // full rank matrix to cover all entries
        std::vector<double> result(3), true_result(3);
        alike.getLikelihood(TasDREAM::logform, model, result);
        ref_alike.getLikelihood(TasDREAM::logform, model, true_result);
        for(size_t i=0; i<3; i++) if (std::abs(result[i] - true_result[i]) > TasGrid::Maths::num_tol) return false;
    }

    return true;
}

inline bool testLikelyScatter(){
    int me = TasGrid::getMPIRank(MPI_COMM_WORLD);
    int tag = 11;
    TasDREAM::LikelihoodGaussIsotropic source(10.0, {1.0, 2.0, 3.0});

    TasDREAM::LikelihoodGaussIsotropic reference;
    TasDREAM::LikelihoodGaussIsotropic destination;
    if (me == 0){
        reference.setData(10.0, {1.0});
        MPILikelihoodScatter(source, destination, 0, tag, MPI_COMM_WORLD);
    }else if (me == 1){
        reference.setData(10.0, {2.0});
        MPILikelihoodScatter(TasDREAM::LikelihoodGaussIsotropic(), destination, 0, tag, MPI_COMM_WORLD);
    }else{
        reference.setData(10.0, {3.0});
        MPILikelihoodScatter(TasDREAM::LikelihoodGaussIsotropic(), destination, 0, tag, MPI_COMM_WORLD);
    }

    std::vector<double> model = {1.0}; // full rank matrix to cover all entries
    std::vector<double> result(1), true_result(1);
    destination.getLikelihood(TasDREAM::logform, model, result);
    reference.getLikelihood(TasDREAM::logform, model, true_result);
    if (std::abs(result[0] - true_result[0]) > TasGrid::Maths::num_tol) return false;

    TasDREAM::LikelihoodGaussAnisotropic asource({14.0, 15.0}, {1.0, 2.0});

    TasDREAM::LikelihoodGaussAnisotropic areference;
    TasDREAM::LikelihoodGaussAnisotropic adestination;
    if (me == 0){
        areference.setData({14.0}, {1.0});
        MPILikelihoodScatter(asource, adestination, 0, tag, MPI_COMM_WORLD);
    }else if (me == 1){
        areference.setData({15.0}, {2.0});
        MPILikelihoodScatter(TasDREAM::LikelihoodGaussAnisotropic(), adestination, 0, tag, MPI_COMM_WORLD);
    }else{
        MPILikelihoodScatter(TasDREAM::LikelihoodGaussAnisotropic(), adestination, 0, tag, MPI_COMM_WORLD);
    }

    if (me != 2){
        result = {0.0};
        true_result = {11.0};
        adestination.getLikelihood(TasDREAM::logform, model, result);
        areference.getLikelihood(TasDREAM::logform, model, true_result);
        if (std::abs(result[0] - true_result[0]) > TasGrid::Maths::num_tol) return false;
    }else{
        if (adestination.getNumOutputs() != 0){
            std::cout << "last rank did not receive empty likelihood." << std::endl;
            return false;
        }
    }

    return true;
}

void testMPIDream(){
    int num_chains = 10;

    int me = TasGrid::getMPIRank(MPI_COMM_WORLD);
    auto full_grid = TasGrid::makeSequenceGrid(2, 7, 2, TasGrid::type_level, TasGrid::rule_rleja);
    TasGrid::loadNeededPoints<mode_sequential>([&](std::vector<double> const &x, std::vector<double> &y, size_t)->void{
            y = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0};
            for(size_t i=0; i<y.size(); i++)
                y[i] += 0.1 * x[i%2]; // add perturbation to y
        }, full_grid, 0);
    auto grid = TasGrid::makeEmpty();

    TasDREAM::LikelihoodGaussAnisotropic full_likelihood({0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}, {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0});
    TasDREAM::LikelihoodGaussAnisotropic likely;

    TasDREAM::TasmanianDREAM full_state(num_chains, 2);
    TasDREAM::TasmanianDREAM state = (me == 0) ? full_state : TasDREAM::TasmanianDREAM();

    TasGrid::MPIGridScatterOutputs(full_grid, grid, 0, 11, MPI_COMM_WORLD);
    TasDREAM::MPILikelihoodScatter(full_likelihood, likely, 0, 13, MPI_COMM_WORLD);

    std::minstd_rand park_miller_init(42), park_miller1(77), park_miller2(77);
    std::uniform_real_distribution<double> unif(0.0, 1.0);
    std::vector<double> initial_state;
    TasDREAM::genGaussianSamples({0.0, 0.0}, {0.2, 0.2}, num_chains, initial_state, [&]()->double{ return unif(park_miller_init); });
    if (me == 0) state.setState(initial_state);
    full_state.setState(initial_state);

    TasDREAM::SampleDREAM(10, 10,
        TasDREAM::DistributedPosterior<TasDREAM::regform>(grid, likely, TasDREAM::uniform_prior, 2, num_chains, 0, MPI_COMM_WORLD),
        grid.getDomainInside(),
        state,
        TasDREAM::dist_uniform, 0.05,
        TasDREAM::const_percent<50>,
        [&]()->double{ return unif(park_miller1); }
    );

    TasDREAM::SampleDREAM(10, 10,
        TasDREAM::posterior<TasDREAM::regform>(full_grid, full_likelihood, TasDREAM::uniform_prior),
        grid.getDomainInside(),
        full_state,
        TasDREAM::dist_uniform, 0.05,
        TasDREAM::const_percent<50>,
        [&]()->double{ return unif(park_miller2); }
    );

    if (me == 0){
        std::vector<double> mean, variance;
        state.getHistoryMeanVariance(mean, variance);
        std::vector<double> ref_mean, ref_variance;
        full_state.getHistoryMeanVariance(ref_mean, ref_variance);
        if (((std::abs(mean[0] - ref_mean[0]) + std::abs(mean[1] - ref_mean[1])) > 1.E-9) ||
            ((std::abs(variance[0] - ref_variance[0]) + std::abs(variance[1] - ref_variance[1])) > 1.E-9))
            throw std::runtime_error("ERROR: mismatch in sampling between reference and computed DREAM.");
    }
}