1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
/*
* Copyright (c) 2017, Miroslav Stoyanov
*
* This file is part of
* Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
*
* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
* and the following disclaimer in the documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
* or promote products derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED.
* THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,
* COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.
* THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,
* IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
*/
#ifndef __TASMANIAN_ADDONS_CCONSTRUCTSURROGATE_CPP
#define __TASMANIAN_ADDONS_CCONSTRUCTSURROGATE_CPP
#include "TasmanianAddons.hpp"
extern "C"{
// num_samples, num_dimensions, x.data(), num_outputs, y.data(), thread_id, error_code
using tsg_scs_model = void (*)(int, int, double const*, int, double*, int, int*);
void tsgConstructSurrogateNoIGSurplus
(tsg_scs_model pymodel,
int max_num_points, int num_parallel_jobs, int max_samples_per_job,
void *grid_pntr,
double tolerance, const char* s_criteria, int output,
int *llimits, const char *checkpoint_filename, int *err){
*err = 1;
TasGrid::TasmanianSparseGrid &grid = *reinterpret_cast<TasGrid::TasmanianSparseGrid*>(grid_pntr);
int const num_dimensions = grid.getNumDimensions();
int const num_outputs = grid.getNumOutputs();
TasGrid::TypeRefinement criteria = TasGrid::IO::getTypeRefinementString(s_criteria);
std::vector<int> level_limits = TasGrid::Utils::copyArray(llimits, num_dimensions);
std::string cfname = (checkpoint_filename != nullptr) ? std::string(checkpoint_filename) : std::string();
auto cpp_model = [&](std::vector<double> const &x, std::vector<double> &y, size_t thread_id)->
void{
int sample_size = (int) x.size() / num_dimensions;
int error_code = 0;
pymodel(sample_size, num_dimensions, x.data(), num_outputs, y.data(), (int) thread_id, &error_code);
if (error_code != 0) throw std::runtime_error("The Python callback returned an error in tsgConstructSurrogateNoIGSurplus()");
};
try{
if (num_parallel_jobs > 1){
TasGrid::constructSurrogate<TasGrid::mode_parallel, TasGrid::no_initial_guess>
(cpp_model, max_num_points, num_parallel_jobs, max_samples_per_job,
grid, tolerance, criteria, output, level_limits, cfname);
}else{
TasGrid::constructSurrogate<TasGrid::mode_sequential, TasGrid::no_initial_guess>
(cpp_model, max_num_points, num_parallel_jobs, max_samples_per_job,
grid, tolerance, criteria, output, level_limits, cfname);
}
*err = 0; // success
}catch(std::runtime_error &){} // *err will remain 1
}
void tsgConstructSurrogateNoIGAniso
(tsg_scs_model pymodel,
int max_num_points, int num_parallel_jobs, int max_samples_per_job, void *grid_pntr,
const char* s_type, int output, int *llimits, const char *checkpoint_filename, int *err){
*err = 1;
TasGrid::TasmanianSparseGrid &grid = *reinterpret_cast<TasGrid::TasmanianSparseGrid*>(grid_pntr);
int const num_dimensions = grid.getNumDimensions();
int const num_outputs = grid.getNumOutputs();
TasGrid::TypeDepth dtype = TasGrid::IO::getDepthTypeString(s_type);
std::vector<int> level_limits = TasGrid::Utils::copyArray(llimits, num_dimensions);
std::string cfname = (checkpoint_filename != nullptr) ? std::string(checkpoint_filename) : std::string();
auto cpp_model = [&](std::vector<double> const &x, std::vector<double> &y, size_t thread_id)->
void{
int sample_size = (int) x.size() / num_dimensions;
int error_code = 0;
pymodel(sample_size, num_dimensions, x.data(), num_outputs, y.data(), (int) thread_id, &error_code);
if (error_code != 0) throw std::runtime_error("The Python callback returned an error in tsgConstructSurrogateNoIGAniso()");
};
try{
if (num_parallel_jobs > 1){
TasGrid::constructSurrogate<TasGrid::mode_parallel, TasGrid::no_initial_guess>
(cpp_model, max_num_points, num_parallel_jobs, max_samples_per_job,
grid, dtype, output, level_limits, cfname);
}else{
TasGrid::constructSurrogate<TasGrid::mode_sequential, TasGrid::no_initial_guess>
(cpp_model, max_num_points, num_parallel_jobs, max_samples_per_job,
grid, dtype, output, level_limits, cfname);
}
*err = 0; // success
}catch(std::runtime_error &){} // *err will remain 1
}
void tsgConstructSurrogateNoIGAnisoFixed
(tsg_scs_model pymodel,
int max_num_points, int num_parallel_jobs, int max_samples_per_job, void *grid_pntr,
const char* s_type, int *aweights, int *llimits, const char *checkpoint_filename, int *err){
*err = 1;
TasGrid::TasmanianSparseGrid &grid = *reinterpret_cast<TasGrid::TasmanianSparseGrid*>(grid_pntr);
int const num_dimensions = grid.getNumDimensions();
int const num_outputs = grid.getNumOutputs();
TasGrid::TypeDepth dtype = TasGrid::IO::getDepthTypeString(s_type);
std::vector<int> anisotropic_weights = TasGrid::Utils::copyArray(aweights, num_dimensions *
((TasGrid::OneDimensionalMeta::isTypeCurved(dtype)) ? 2 : 1));
std::vector<int> level_limits = TasGrid::Utils::copyArray(llimits, num_dimensions);
std::string cfname = (checkpoint_filename != nullptr) ? std::string(checkpoint_filename) : std::string();
auto cpp_model = [&](std::vector<double> const &x, std::vector<double> &y, size_t thread_id)->
void{
int sample_size = (int) x.size() / num_dimensions;
int error_code = 0;
pymodel(sample_size, num_dimensions, x.data(), num_outputs, y.data(), (int) thread_id, &error_code);
if (error_code != 0) throw std::runtime_error("The Python callback returned an error in tsgConstructSurrogateNoIGAnisoFixed()");
};
try{
if (num_parallel_jobs > 1){
TasGrid::constructSurrogate<TasGrid::mode_parallel, TasGrid::no_initial_guess>
(cpp_model, max_num_points, num_parallel_jobs, max_samples_per_job,
grid, dtype, anisotropic_weights, level_limits, cfname);
}else{
TasGrid::constructSurrogate<TasGrid::mode_sequential, TasGrid::no_initial_guess>
(cpp_model, max_num_points, num_parallel_jobs, max_samples_per_job,
grid, dtype, anisotropic_weights, level_limits, cfname);
}
*err = 0; // success
}catch(std::runtime_error &){} // *err will remain 1
}
// num_samples, num_dimensions, x.data(), has_init_guess, num_outputs, y.data(), thread_id, error_code
using tsg_ics_model = void (*)(int, int, double const*, int, int, double*, int, int*);
void tsgConstructSurrogateWiIGSurplus
(tsg_ics_model pymodel,
int max_num_points, int num_parallel_jobs, int max_samples_per_job,
void *grid_pntr,
double tolerance, const char* s_criteria, int output,
int *llimits, const char *checkpoint_filename, int *err){
*err = 1;
TasGrid::TasmanianSparseGrid &grid = *reinterpret_cast<TasGrid::TasmanianSparseGrid*>(grid_pntr);
int const num_dimensions = grid.getNumDimensions();
int const num_outputs = grid.getNumOutputs();
TasGrid::TypeRefinement criteria = TasGrid::IO::getTypeRefinementString(s_criteria);
std::vector<int> level_limits = TasGrid::Utils::copyArray(llimits, num_dimensions);
std::string cfname = (checkpoint_filename != nullptr) ? std::string(checkpoint_filename) : std::string();
auto cpp_model = [&](std::vector<double> const &x, std::vector<double> &y, size_t thread_id)->
void{
int sample_size = (int) x.size() / num_dimensions;
int ihas_guess = 1; // assume there is a guess
if (y.empty()){
ihas_guess = 0; // no guess
y.resize(TasGrid::Utils::size_mult(sample_size, num_outputs));
}
int error_code = 0;
pymodel(sample_size, num_dimensions, x.data(), ihas_guess, num_outputs, y.data(), (int) thread_id, &error_code);
if (error_code != 0) throw std::runtime_error("The Python callback returned an error in tsgConstructSurrogateWiIGSurplus()");
};
try{
if (num_parallel_jobs > 1){
TasGrid::constructSurrogate<TasGrid::mode_parallel, TasGrid::with_initial_guess>
(cpp_model, max_num_points, num_parallel_jobs, max_samples_per_job,
grid, tolerance, criteria, output, level_limits, cfname);
}else{
TasGrid::constructSurrogate<TasGrid::mode_sequential, TasGrid::with_initial_guess>
(cpp_model, max_num_points, num_parallel_jobs, max_samples_per_job,
grid, tolerance, criteria, output, level_limits, cfname);
}
*err = 0; // success
}catch(std::runtime_error &){} // *err will remain 1
}
void tsgConstructSurrogateWiIGAniso
(tsg_ics_model pymodel,
int max_num_points, int num_parallel_jobs, int max_samples_per_job, void *grid_pntr,
const char* s_type, int output, int *llimits, const char *checkpoint_filename, int *err){
*err = 1;
TasGrid::TasmanianSparseGrid &grid = *reinterpret_cast<TasGrid::TasmanianSparseGrid*>(grid_pntr);
int const num_dimensions = grid.getNumDimensions();
int const num_outputs = grid.getNumOutputs();
TasGrid::TypeDepth dtype = TasGrid::IO::getDepthTypeString(s_type);
std::vector<int> level_limits = TasGrid::Utils::copyArray(llimits, num_dimensions);
std::string cfname = (checkpoint_filename != nullptr) ? std::string(checkpoint_filename) : std::string();
auto cpp_model = [&](std::vector<double> const &x, std::vector<double> &y, size_t thread_id)->
void{
int sample_size = (int) x.size() / num_dimensions;
int ihas_guess = 1; // assume there is a guess
if (y.empty()){
ihas_guess = 0; // no guess
y.resize(TasGrid::Utils::size_mult(sample_size, num_outputs));
}
int error_code = 0;
pymodel(sample_size, num_dimensions, x.data(), ihas_guess, num_outputs, y.data(), (int) thread_id, &error_code);
if (error_code != 0) throw std::runtime_error("The Python callback returned an error in tsgConstructSurrogateWiIGAniso()");
};
try{
if (num_parallel_jobs > 1){
TasGrid::constructSurrogate<TasGrid::mode_parallel, TasGrid::with_initial_guess>
(cpp_model, max_num_points, num_parallel_jobs, max_samples_per_job,
grid, dtype, output, level_limits, cfname);
}else{
TasGrid::constructSurrogate<TasGrid::mode_sequential, TasGrid::with_initial_guess>
(cpp_model, max_num_points, num_parallel_jobs, max_samples_per_job,
grid, dtype, output, level_limits, cfname);
}
*err = 0; // success
}catch(std::runtime_error &){} // *err will remain 1
}
void tsgConstructSurrogateWiIGAnisoFixed
(tsg_ics_model pymodel,
int max_num_points, int num_parallel_jobs, int max_samples_per_job, void *grid_pntr,
const char* s_type, int *aweights, int *llimits, const char *checkpoint_filename, int *err){
*err = 1;
TasGrid::TasmanianSparseGrid &grid = *reinterpret_cast<TasGrid::TasmanianSparseGrid*>(grid_pntr);
int const num_dimensions = grid.getNumDimensions();
int const num_outputs = grid.getNumOutputs();
TasGrid::TypeDepth dtype = TasGrid::IO::getDepthTypeString(s_type);
std::vector<int> anisotropic_weights = TasGrid::Utils::copyArray(aweights, num_dimensions *
((TasGrid::OneDimensionalMeta::isTypeCurved(dtype)) ? 2 : 1));
std::vector<int> level_limits = TasGrid::Utils::copyArray(llimits, num_dimensions);
std::string cfname = (checkpoint_filename != nullptr) ? std::string(checkpoint_filename) : std::string();
auto cpp_model = [&](std::vector<double> const &x, std::vector<double> &y, size_t thread_id)->
void{
int sample_size = (int) x.size() / num_dimensions;
int ihas_guess = 1; // assume there is a guess
if (y.empty()){
ihas_guess = 0; // no guess
y.resize(TasGrid::Utils::size_mult(sample_size, num_outputs));
}
int error_code = 0;
pymodel(sample_size, num_dimensions, x.data(), ihas_guess, num_outputs, y.data(), (int) thread_id, &error_code);
if (error_code != 0) throw std::runtime_error("The Python callback returned an error in tsgConstructSurrogateWiIGAnisoFixed()");
};
try{
if (num_parallel_jobs > 1){
TasGrid::constructSurrogate<TasGrid::mode_parallel, TasGrid::with_initial_guess>
(cpp_model, max_num_points, num_parallel_jobs, max_samples_per_job,
grid, dtype, anisotropic_weights, level_limits, cfname);
}else{
TasGrid::constructSurrogate<TasGrid::mode_sequential, TasGrid::with_initial_guess>
(cpp_model, max_num_points, num_parallel_jobs, max_samples_per_job,
grid, dtype, anisotropic_weights, level_limits, cfname);
}
*err = 0; // success
}catch(std::runtime_error &){} // *err will remain 1
}
} // extern "C"
#endif
|