1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
#include "Tasmanian.hpp"
using namespace std;
/*!
* \internal
* \file example_dream_05.cpp
* \brief Examples for the Tasmanian DREAM module.
* \author Miroslav Stoyanov
* \ingroup TasmanianDREAMExamples
*
* Tasmanian DREAM Example 5
* \endinternal
*/
/*!
* \ingroup TasmanianDREAMExamples
* \addtogroup TasmanianDREAMExamples5 Tasmanian DREAM module, example 5
*
* Example 5: Given noisy data that is the superposition of two sin-waves,
* find the frequency and magnitude of the waves, the frequency is
* on of 5 possible integer values.
* Unlike the previous cases where we were looking at the mean and variance
* of the solution, here we consider the mode of the posterior distribution,
* i.e., we want the values that give us best-fit in deterministic sense.
* The problem can be viewed as a deterministic optimization problem,
* but the noise in the data would offer significant challenges
* for any global optimization scheme; even if the solution computed
* by the DREAM algorithm is not sufficiently "close", it is still
* a very good initial guess for local optimization methods.
*
* This example shows how to use DREAM with a custom model
* (without Tasmanian sparse grids) and a custom likelihood
* (not implemented in Tasmanian).
* The example also shows how to use DREAM sampling to search
* for the (approximate) solution to an optimization problem.
*/
//! \brief DREAM Example 5: signal decomposition, finding the best fit
//! \ingroup TasmanianDREAMExamples5
//! \snippet DREAM/Examples/example_dream_05.cpp DREAM_Example_05 example
void dream_example_05(){
#ifndef __TASMANIAN_DOXYGEN_SKIP
//! [DREAM_Example_05 example]
#endif
// using the default random engine, but must reset the random number generator
srand((int) time(nullptr));
// EXAMPLE 5:
cout << "\n" << "---------------------------------------------------------------------------------------------------\n";
cout << std::scientific; cout.precision(5);
cout << "EXAMPLE 5: infer the frequency and magnitude of two signals from noisy data\n"
<< " the model has 5 parameters: f(x_1 ... x_5) = sum x_k sin(k * pi * t)\n"
<< " data = 2.0 * sin(2 * pi * t) + sin(4 * pi * t) + noise\n"
<< " t in [0, 1], t is discretized using 64 equidistant nodes\n"
<< " we use two different likelihood functions,"
<< "corresponding to l-2 and l-1 norms\n"
<< " we are looking for the mode of the posterior,"
<< "i.e., the optimal fit to the data\n\n";
constexpr double pi = 3.14159265358979323846; // half-period of the std::sin() function
// higher dimensions require more samples
int num_dimensions = 5;
int num_chains = 50;
int num_burnup_iterations = 1000;
int num_sample_iterations = 1000;
// the total number of samples is num_chains * num_iterations
int num_discrete_nodes = 64;
// create a lambda function that represents the model
// normally this would be a call to an external code
auto model = [&](std::vector<double> const &x, std::vector<double> &y)->
void{
double dt = 1.0 / ((double) y.size());
double t = 0.5 * dt;
for(auto &output : y){
output = 0.0;
int frequency = 1;
for(auto const &weight : x)
output += weight * std::sin(double(frequency++) * t * pi);
t += dt;
}
};
// the model defined above deals with single set of inputs
// sampling requires that models are computed in batch
// the size of x will always be a multiple of the number of inputs
// the size of y MUST be set to the corresponding multiple of the number of outputs
// batch evaluations are best done in parallel
auto batch_model = [&](std::vector<double> const &x, std::vector<double> &y)->
void{
int num_samples = (int) x.size() / num_dimensions;
y.resize(num_samples * num_discrete_nodes);
// use up to 4 threads (if available)
int num_threads = std::min((int) std::thread::hardware_concurrency(), 4);
std::vector<std::thread> workers(num_threads);
for(int start = 0; start<num_threads; start++){
workers[start] = std::thread([&, start]()->
void{
for(int i=start; i<num_samples; i+=num_threads){
std::vector<double> single_input(&x[i*num_dimensions],
&x[i*num_dimensions] + num_dimensions);
std::vector<double> single_output(num_discrete_nodes);
model(single_input, single_output);
std::copy(single_output.begin(), single_output.end(),
&y[i*num_discrete_nodes]);
}
});
}
for(auto &w : workers) w.join();
};
std::vector<double> signal = {0.0, 2.0, 0.0, 1.0, 0.0};
std::vector<double> data(num_discrete_nodes);
model(signal, data);
// add noise to the data, use magnitude 1 / num_discrete_nodes
// you can adjust the example to consider more/less noise
TasDREAM::applyUniformUpdate(data, 1.0 / ((double) num_discrete_nodes));
// first use Gaussian likelihood: exp( - sigma * (f(x) - d)^2 )
// note that the numerator uses the l-2 norm of the difference between model and data
// using smaller variance since we are looking for best-fit (even with the noise)
TasDREAM::LikelihoodGaussIsotropic likely(1.0 / ((double) num_discrete_nodes/2), data);
// Define the search domain, each parameter is assumed to be in [0, 3]
std::vector<double> lower(num_dimensions, 0.0);
std::vector<double> upper(num_dimensions, 3.0);
TasDREAM::TasmanianDREAM state(num_chains, num_dimensions);
auto initial_chains = TasDREAM::genUniformSamples(lower, upper, num_chains); // uniform initial state
state.setState(initial_chains);
constexpr auto sampling_form = TasDREAM::logform; // ensure uniform sampling form
TasDREAM::SampleDREAM<sampling_form>
(num_burnup_iterations, num_sample_iterations,
TasDREAM::posterior<sampling_form>
(batch_model, // must use the batch model
likely, // provide the likelihood
TasDREAM::uniform_prior), // assume non-informative prior
TasDREAM::hypercube(lower, upper),
state,
TasDREAM::no_update,
TasDREAM::const_percent<100> // use only the differential update
);
std::vector<double> solution = state.getApproximateMode();
//cout << " l-2 acceptance rate: " << state.getAcceptanceRate() << endl;
cout << "Using Gaussian likelihood, the computed solution is:\n"
<< " computed: " << std::fixed;
for(auto x : solution) cout << setw(13) << x;
cout << "\n error: " << std::scientific;
for(int i=0; i<num_dimensions; i++) cout << setw(13) << std::abs(solution[i] - signal[i]);
cout << "\n\n";
// Change the likelihood to use the l-1 norm
// Combine the model and the likelihood in a single function similar to batch_model()
// The main difference is that y doesn't need to be resized
// and the likelihood is applied right after the model
// Note that the sampling form has to be hard-coded or captured
auto model_likelihood = [&](std::vector<double> const &x,
std::vector<double> &y)->
void{
int num_samples = (int) x.size() / num_dimensions;
// use up to 4 threads (if available)
int num_threads = std::min((int) std::thread::hardware_concurrency(), 4);
std::vector<std::thread> workers(num_threads);
for(int start = 0; start<num_threads; start++){
workers[start] = std::thread([&, start]()->
void{
for(int i=start; i<num_samples; i+=num_threads){
std::vector<double> single_input(&x[i*num_dimensions],
&x[i*num_dimensions] + num_dimensions);
std::vector<double> single_output(num_discrete_nodes);
model(single_input, single_output);
y[i] = 0.0; // compute the l-1 norm of the difference
for(int j=0; j<num_discrete_nodes; j++)
y[i] += std::abs(single_output[j] - data[j]);
y[i] = - double(num_discrete_nodes/2) * y[i]; // apply the scale
// added for completeness, only logform is used in this example
if (sampling_form == TasDREAM::regform) y[i] = std::exp(y[i]);
}
});
}
for(auto &w : workers) w.join();
};
// reset the state
state = TasDREAM::TasmanianDREAM(num_chains, num_dimensions);
state.setState(initial_chains);
TasDREAM::SampleDREAM<sampling_form>
(num_burnup_iterations, num_sample_iterations,
TasDREAM::posterior<sampling_form>
(model_likelihood, // provide both the likelihood and the model
TasDREAM::uniform_prior), // assume non-informative prior
TasDREAM::hypercube(lower, upper),
state,
TasDREAM::no_update,
TasDREAM::const_percent<100> // use only the differential update
);
solution = state.getApproximateMode();
//cout << " l-1 acceptance rate: " << state.getAcceptanceRate() << endl;
cout << "Using l-1 likelihood, the computed solution is:\n"
<< " computed: " << std::fixed;
for(auto x : solution) cout << setw(13) << x;
cout << "\n error: " << std::scientific;
for(int i=0; i<num_dimensions; i++) cout << setw(13) << std::abs(solution[i] - signal[i]);
cout << "\n\n";
// Note: the l-1 likelihood is expected to produce a slightly more accurate solution
// but the search is based on random numbers, hence this cannot be guaranteed.
// The l-1 likelihood has a much sharper mode, but that reduces the acceptance rate.
// Both likelihood methods should identify the signal components to the precision
// allowed by the relatively high signal-to-noise ratio.
#ifndef __TASMANIAN_DOXYGEN_SKIP
//! [DREAM_Example_05 example]
#endif
}
|