1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
|
/*
* Copyright (c) 2017, Miroslav Stoyanov
*
* This file is part of
* Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
*
* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
* and the following disclaimer in the documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
* or promote products derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED.
* THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,
* COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.
* THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,
* IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
*/
#ifndef __TASMANIAN_TASDREAM_EXTERNAL_TESTS_CPP
#define __TASMANIAN_TASDREAM_EXTERNAL_TESTS_CPP
#include "tasdreamExternalTests.hpp"
double DreamExternalTester::getChiValue(size_t num_degrees){
switch(num_degrees){
case 9: return 21.666;
case 15: return 30.578;
case 19: return 36.191;
case 20: return 37.566;
case 24: return 42.980;
case 49: return 74.919;
case 99: return 134.642;
case 124: return 163.546;
default:
throw std::runtime_error("ERROR: Unknown degrees of freedom for the Chi-squared test.");
}
}
bool DreamExternalTester::testFit(const std::vector<int> &cell_count_a, const std::vector<int> &cell_count_b){
double suma = (double) std::accumulate(cell_count_a.begin(), cell_count_a.end(), 0);
double sumb = (double) std::accumulate(cell_count_b.begin(), cell_count_b.end(), 0);
double scale = std::sqrt(sumb / suma);
double test_value = 0.0;
auto ia = cell_count_a.begin(), ib = cell_count_b.begin();
while(ia != cell_count_a.end()){
double diff = ((double) *ia) * scale - ((double) *ib) / scale;
double sum = (double) (*ia++ + *ib++);
if (sum > 0.0) test_value += diff * diff / sum;
}
bool pass = (test_value < getChiValue(cell_count_a.size() - 1));
if (!pass || showvalues){
if (!pass) cout << "Chi-Squared test FAILED" << endl;
cout << "Totals: " << suma << " " << sumb << endl;
cout << "Chi-Squared test value = " << test_value << " num cells: " << cell_count_a.size() << endl;
cout << "Critical Chi-Squared value = " << getChiValue(cell_count_a.size() - 1) << endl;
}
return pass;
}
void DreamExternalTester::binHypercubeSamples(const std::vector<double> &lower, const std::vector<double> &upper, int num_bins1D, const std::vector<double> &data, std::vector<int> &bin_count){
size_t num_dimensions = lower.size();
if (upper.size() != num_dimensions) throw std::runtime_error("ERROR: upper and lower must have the same size in binHypercubeSamples() DREAM testing");
std::vector<double> dx(num_dimensions);
auto il = lower.begin(), iu = upper.begin();
for(auto &d : dx) d = (*iu++ - *il++) / ((double) num_bins1D);
size_t num_bins = 1;
for(size_t i=0; i<num_dimensions; i++) num_bins *= num_bins1D;
bin_count = std::vector<int>(num_bins, 0);
auto id = data.begin();
while(id != data.end()){
std::vector<size_t> binid(num_dimensions);
il = lower.begin();
iu = dx.begin();
for(auto &i : binid){
i = (size_t) ((*id++ - *il++) / *iu++);
if (i >= (size_t) num_bins1D) i = num_bins1D-1;
}
size_t bin_index = 0;
for(auto i : binid) bin_index = num_dimensions * bin_index + i;
bin_count[bin_index]++;
}
}
bool DreamExternalTester::compareSamples(const std::vector<double> &lower, const std::vector<double> &upper, int num_bins1D,
const std::vector<double> &data1, const std::vector<double> &data2){
std::vector<int> count1, count2;
binHypercubeSamples(lower, upper, num_bins1D, data1, count1);
binHypercubeSamples(lower, upper, num_bins1D, data2, count2);
return testFit(count1, count2);
}
bool DreamExternalTester::testGaussian3D(){
bool passAll = true;
int num_dimensions = 3;
int num_samples = 1000, num_chains = 20;
int num_iterations = num_samples / num_chains + 2;
int num_burnup = 20 * num_iterations;
std::minstd_rand park_miller(42);
if (usetimeseed) park_miller.seed(getRandomRandomSeed());
std::uniform_real_distribution<double> unif(0.0, 1.0);
auto get_rand = [&]()->double{ return unif(park_miller); };
// compute reference samples, mean 2.0, std 3.0
std::vector<double> means(num_dimensions, 2.0), deviations(num_dimensions, 3.0);
std::vector<double> tresult = genGaussianSamples(means, deviations, num_samples, get_rand);
// Use DREAM with zero-weight (i.e., standard Metropolis-Hastings)
TasmanianDREAM state(num_chains, num_dimensions);
// initialize with correct mean 2.0, std 3.0
std::vector<double> initial_state = genGaussianSamples(means, deviations, num_chains, get_rand);
state.setState(initial_state);
SampleDREAM(num_burnup, num_iterations,
[&](const std::vector<double> &candidates, std::vector<double> &values){
// 3D Gaussian PDF with standard deviation of 3.0
auto ix = candidates.begin();
for(auto &v : values)
v = getDensity<dist_gaussian>(*ix++, 2.0, 9.0) * getDensity<dist_gaussian>(*ix++, 2.0, 9.0) * getDensity<dist_gaussian>(*ix++, 2.0, 9.0);
},
[&](const std::vector<double>&)->bool{ return true; }, // unbounded domain
state,
[&](std::vector<double> &x){
applyGaussianUpdate(x, 3.0, [&]()->double{ return unif(park_miller); });
},
const_percent<0>, // independent chains, no differential proposal
get_rand
);
std::vector<double> upper(num_dimensions, 11.0), lower(num_dimensions, -7.0); // compute over a box of 3 standard deviations
bool pass = compareSamples(lower, upper, 5, tresult, state.getHistory());
passAll = passAll && pass;
if (verbose || !pass) reportPassFail(pass, "Gaussian 3D", "with independent chains");
state = TasmanianDREAM(num_chains, num_dimensions); // reinitialize
state.setState(initial_state);
SampleDREAM(num_burnup, 2*num_iterations,
[&](const std::vector<double> &candidates, std::vector<double> &values){
// 3D Gaussian PDF with standard deviation of 3.0
auto ix = candidates.begin();
for(auto &v : values)
v = getDensity<dist_gaussian>(*ix++, 2.0, 9.0) * getDensity<dist_gaussian>(*ix++, 2.0, 9.0) * getDensity<dist_gaussian>(*ix++, 2.0, 9.0);
},
hypercube(lower, upper), // large domain
state,
dist_uniform, 0.2, // uniform proposal
const_percent<50>, // differential proposal is weighted by 50%
get_rand
);
pass = compareSamples(lower, upper, 5, tresult, state.getHistory()) && (state.getAcceptanceRate() > 0.5);
passAll = passAll && pass;
if (verbose || !pass) reportPassFail(pass, "Gaussian 3D", "with correlated chains");
// test anisotropic Gaussian likelihood
// compute reference samples, compute initial set from the true solution, reinitialize the state
tresult = genGaussianSamples({1.5, 2.0, 2.5}, {0.5, 1.0, 2.0}, num_samples, get_rand);
initial_state = genGaussianSamples({1.5, 2.0, 2.5}, {0.5, 1.0, 2.0}, num_chains, get_rand);
state = TasmanianDREAM(num_chains, num_dimensions); // reinitialize
state.setState(initial_state);
LikelihoodGaussAnisotropic likely({0.25, 1.0, 4.0}, {1.5, 2.0, 2.5}, 1);
if (likely.getNumOutputs() != 3) throw std::runtime_error("LikelihoodGaussAnisotropic has wrong num outputs");
SampleDREAM(num_burnup, num_iterations,
posterior(
[&](const std::vector<double> &candidates, std::vector<double> &values){
values = candidates; // the model is identity
},
likely, uniform_prior),
hypercube(lower, upper), // large domain
state,
dist_uniform, 0.2,
const_percent<50>, // differential proposal is weighted by 50%
get_rand
);
pass = compareSamples(lower, upper, 5, tresult, state.getHistory()) && (state.getAcceptanceRate() > 0.5);
std::vector<double> mean, variance;
state.getHistoryMeanVariance(mean, variance);
std::vector<double> tmean = {1.5, 2.0, 2.5}, tvar = {0.25, 1.0, 4.0};
for(int i=0; i<3; i++) {
if (std::abs(mean[i] - tmean[i]) / tmean[i] > 0.3){
cout << "error in mean exceeded: " << std::abs(mean[i] - tmean[i]) / tmean[i] << endl;
pass = false;
}
if (std::abs(variance[i] - tvar[i]) / tvar[i] > 0.6){
cout << "error in variance exceeded: " << std::abs(variance[i] - tvar[i]) / tvar[i] << endl;
pass = false;
}
}
state = TasmanianDREAM(); // reset to empty test
if (state.getNumDimensions() != 0) throw std::runtime_error("TasmanianDREAM has wrong num dimensions");
passAll = passAll && pass;
if (verbose || !pass) reportPassFail(pass, "Gaussian 3D", "with anisotropic likelihood");
reportPassFail(passAll, "Gaussian 3D", "DREAM vs Box-Muller");
return passAll;
}
bool DreamExternalTester::testGaussian2D(){
bool passAll = true;
int num_dimensions = 2;
int num_samples = 1000, num_chains = 20;
int num_iterations = num_samples / num_chains + 2;
int num_burnup = 20 * num_iterations;
std::minstd_rand park_miller(42);
if (usetimeseed) park_miller.seed(getRandomRandomSeed());
std::uniform_real_distribution<double> unif(0.0, 1.0);
auto get_rand = [&]()->double{ return unif(park_miller); };
// compute reference samples, mean 0.3, std 0.15 (3 deviations fit in [-1, 1]^2)
std::vector<double> tresult(num_dimensions * num_samples, 0.3);
applyGaussianUpdate(tresult, 0.15, get_rand);
// approximate the pdf in log-form, log-form of the Gaussian pdf is quadratic, the grid gives exact match
TasGrid::TasmanianSparseGrid grid;
grid.makeSequenceGrid(2, 1, 2, TasGrid::type_iptotal, TasGrid::rule_rleja); // interpolates exactly all quadratic polynomials
std::vector<double> grid_points, values;
grid.getNeededPoints(grid_points);
values.resize(grid_points.size() / 2);
auto ip = grid_points.begin();
for(auto &v : values)
v = getDensity<dist_gaussian, logform>(*ip++, 0.3, 0.0225) + getDensity<dist_gaussian, logform>(*ip++, 0.3, 0.0225);
grid.loadNeededPoints(values);
// initialize the DREAM state
TasmanianDREAM state(num_chains, num_dimensions);
std::vector<double> initial_set(num_chains * num_dimensions, 0.0); // initialize with uniform samples
applyUniformUpdate(initial_set, 1.0, get_rand);
state.setState(initial_set);
SampleDREAM<logform>(num_burnup, num_iterations,
posterior<logform>(grid, uniform_prior),
grid.getDomainInside(),
state,
dist_gaussian, 0.1,
const_percent<98>, // correlated chains
get_rand
);
std::vector<double> upper(num_dimensions, 1.0), lower(num_dimensions, -1.0); // compute over a box of over 3 standard deviations
bool pass = compareSamples(lower, upper, 10, tresult, state.getHistory());
passAll = passAll && pass;
if (verbose || !pass) reportPassFail(pass, "Gaussian 2D", "with inferred domain");
// ------------------------------------------------------------ //
// next test uses a sub-domain of the first quadrant, the standard deviation is smaller
std::fill(tresult.begin(), tresult.end(), 0.3);
applyGaussianUpdate(tresult, 0.1, get_rand);
// approximate the pdf in regular form, true approximation
grid.makeSequenceGrid(2, 1, 24, TasGrid::type_iptotal, TasGrid::rule_rleja); // interpolates exactly all quadratic polynomials
grid.getNeededPoints(grid_points);
values.resize(grid_points.size() / 2);
ip = grid_points.begin();
for(auto &v : values) // using tighter variance of 0.01
v = getDensity<dist_gaussian>(*ip++, 0.3, 0.01) * getDensity<dist_gaussian>(*ip++, 0.3, 0.01);
grid.loadNeededPoints(values);
// re-initialize the DREAM state
state = TasmanianDREAM(num_chains, num_dimensions);
initial_set = std::vector<double>(tresult.begin(), tresult.begin() + num_chains * num_dimensions);
state.setState(initial_set);
lower = std::vector<double>(num_dimensions, 0.0); // consider only the first quadrant
upper = std::vector<double>(num_dimensions, 1.0);
SampleDREAM<regform>(num_burnup, num_iterations,
posterior<regform>(grid, uniform_prior),
hypercube(lower, upper),
state,
dist_uniform, 0.1,
const_percent<98>, // correlated chains
[&]()->double{ return unif(park_miller); }
);
// check if any of the samples fall outside of the domain
pass = compareSamples(lower, upper, 10, tresult, state.getHistory()) &&
std::none_of(state.getHistory().begin(), state.getHistory().end(), [&](double x)->bool{ return ((x < 0.0) || (x>1.0)); });
passAll = passAll && pass;
if (verbose || !pass) reportPassFail(pass, "Gaussian 2D", "with custom domain");
// ------------------------------------------------------------ //
// next test uses the same sub-domain of the first quadrant, but the grid and prior each define different dimensions
// approximate the pdf in regular form, true approximation
grid.makeSequenceGrid(2, 1, 24, TasGrid::type_iptotal, TasGrid::rule_rleja); // interpolates exactly all quadratic polynomials
grid.getNeededPoints(grid_points);
values.resize(grid_points.size() / 2);
ip = grid_points.begin();
for(auto &v : values){ // using tighter variance of 0.01
v = getDensity<dist_gaussian>(*ip++, 0.3, 0.01);
ip++; // skip the second dimension in the likelihood
}
grid.loadNeededPoints(values);
// re-initialize the DREAM state
state.clearHistory();
initial_set = std::vector<double>(tresult.begin(), tresult.begin() + num_chains * num_dimensions);
state.setState(initial_set);
SampleDREAM<regform>(num_burnup, num_iterations,
posterior<regform>(grid,
[&](TypeSamplingForm, const std::vector<double> &candidates, std::vector<double> &vals)->void{
auto ic = candidates.begin();
for(auto &v : vals){ // using tighter variance of 0.01
ic++; // skip the first dimension in the likelihood
v = getDensity<dist_gaussian>(*ic++, 0.3, 0.01);
}
}),
hypercube(lower, upper),
state,
dist_uniform, 0.1,
const_percent<98>, // correlated chains
get_rand
);
// check if any of the samples fall outside of the domain and if the size of the history is correct
pass = compareSamples(lower, upper, 10, tresult, state.getHistory()) &&
std::none_of(state.getHistory().begin(), state.getHistory().end(), [&](double x)->bool{ return ((x < 0.0) || (x>1.0)); }) &&
(state.getNumHistory() == (size_t)(num_iterations * num_chains));
passAll = passAll && pass;
if (verbose || !pass) reportPassFail(pass, "Gaussian 2D", "with custom prior");
reportPassFail(passAll, "Gaussian 2D", "DREAM-Grid vs Box-Muller");
return passAll;
}
bool DreamExternalTester::testKnownDistributions(){
// Test Gaussian distribution
bool pass1 = testGaussian3D();
bool pass2 = testGaussian2D();
return pass1 && pass2;
}
bool DreamExternalTester::testCustomModel(){
bool passAll = true;
int num_dimensions = 3;
int num_samples = 1000, num_chains = 40;
int num_iterations = num_samples / num_chains + 2;
int num_burnup = 20 * num_iterations;
std::minstd_rand park_miller(42);
if (usetimeseed) park_miller.seed(getRandomRandomSeed());
std::uniform_real_distribution<double> unif(0.0, 1.0);
auto get_rand = [&]()->double{ return unif(park_miller); };
// compute reference samples, means 1.5, 2.0 and 2.5, variance 4.0, 9.0, 4.0
std::vector<double> tresult = genGaussianSamples({1.5, 2.0, 2.5}, {2.0, 3.0, 2.0}, num_samples, get_rand);
// Use DREAM with custom model of identity (all information comes form the prior and likelihood)
TasmanianDREAM state(num_chains, num_dimensions);
std::vector<double> initial_state(num_chains * num_dimensions, 2.0); // initialize with random samples
applyGaussianUpdate(initial_state, 3.0, [&]()->double{ return unif(park_miller); });
state.setState(initial_state);
LikelihoodGaussIsotropic likely(4.0, {1.5, 2.5});
if (likely.getNumOutputs() != 2) throw std::runtime_error("LikelihoodGaussAnisotropic has wrong num outputs");
SampleDREAM(num_burnup, num_iterations,
posterior(
[&](const std::vector<double> &candidates, std::vector<double> &values)->void{ // model
size_t num_candidates = candidates.size() / 3;
auto ic = candidates.begin();
values.resize(2 * num_candidates);
auto iv = values.begin();
while(iv != values.end()){ // takes the first and last parameters
*iv++ = *ic++;
ic++;
*iv++ = *ic++;
}
},
likely,
[&](TypeSamplingForm, const std::vector<double> &candidates, std::vector<double> &values)->void{ // prior
auto ic = candidates.begin() + 1; // uses the second input entries only
for(auto &v : values){
v = getDensity<dist_gaussian>(*ic, 2.0, 9.0);
std::advance(ic, num_dimensions);
}
}),
[&](const std::vector<double>&)->bool{ return true; }, // unbounded domain
state,
[&](std::vector<double> &x){
applyGaussianUpdate(x, 0.5, [&]()->double{ return unif(park_miller); });
},
const_percent<65>,
get_rand
);
std::vector<double> upper(num_dimensions, 11.0), lower(num_dimensions, -7.0); // compute over a box of more than 3 standard deviations
bool pass = compareSamples(lower, upper, 5, tresult, state.getHistory());
passAll = passAll && pass;
if (verbose || !pass) reportPassFail(pass, "Inference 3D", "with custom model");
state = TasmanianDREAM(num_chains, num_dimensions); // reinitialize
state.setState(genUniformSamples({0.0, 0.0, 0.0}, {1.0, 1.0, 1.0}, num_chains, get_rand));
lower = std::vector<double>(num_dimensions, 0.0);
upper = std::vector<double>(num_dimensions, 1.0);
likely = LikelihoodGaussIsotropic(0.01, {0.0, 0.0});
SampleDREAM<logform>(num_burnup, num_iterations,
posterior<logform>(
[&](const std::vector<double> &candidates, std::vector<double> &values)->void{ // model
size_t num_candidates = candidates.size() / 3;
values.resize(2 * num_candidates);
auto ic = candidates.begin();
auto iv = values.begin();
while(iv != values.end()){ // takes the first and last parameters
*iv++ = 1.0 - std::sin(DreamMaths::pi * *ic++);
ic++;
*iv++ = 1.0 - std::sin(DreamMaths::pi * *ic++);
}
},
likely, uniform_prior),
hypercube(lower, upper),
state,
dist_gaussian, 0.01,
const_percent<50>,
get_rand
);
std::vector<double> mode;
state.getApproximateMode(mode);
//cout << mode[0] << " " << mode[1] << " " << mode[2] << " acceptance = " << state.getAcceptanceRate() << endl;
pass = ((mode[0] > 0.45) && (mode[0] < 0.55) && (mode[2] > 0.45) && (mode[2] < 0.55) && (state.getAcceptanceRate() > 0.5));
passAll = passAll && pass;
if (verbose || !pass) reportPassFail(pass, "Inference 3D", "optimization objective");
reportPassFail(pass, "Inference 3D", "DREAM Bayesian inference");
return passAll;
}
bool DreamExternalTester::testGridModel(){
bool passAll = true;
int num_dimensions = 2, num_outputs = 64;
int num_samples = 1000, num_chains = 40;
int num_iterations = num_samples / num_chains + 2;
int num_burnup = 20 * num_iterations;
std::minstd_rand park_miller(42);
if (usetimeseed) park_miller.seed(getRandomRandomSeed());
std::uniform_real_distribution<double> unif(0.0, 1.0);
auto get_rand = [&]()->double{ return unif(park_miller); };
// Construct sparse grid approximation to the SinSin model
std::vector<double> lower = {0.0, 2.0}, upper = {4.0, 6.0};
TasGrid::TasmanianSparseGrid grid;
grid.makeLocalPolynomialGrid(num_dimensions, num_outputs, 8, 2); // using quadratic basis of level 4
grid.setDomainTransform(lower, upper); // magnitude is in range (0, 4), frequency in range (2.0, 6.0)
std::vector<double> points, values(num_outputs * grid.getNumPoints());
grid.getNeededPoints(points);
auto ip = points.begin(), iv = values.begin();
while(ip != points.end()){
getSinSinModel(*ip, *(ip+1), 1.0 / ((double) num_outputs), num_outputs, &*iv);
std::advance(ip, num_dimensions);
std::advance(iv, num_outputs);
}
grid.loadNeededPoints(values); // surrogate constructed
// initialize the state
TasmanianDREAM state(num_chains, grid);
state.setState(genUniformSamples(lower, upper, num_chains, get_rand));
// initialize the likelihood
std::vector<double> data(num_outputs);
getSinSinModel(2.0, 5.0, 1.0 / ((double) num_outputs), num_outputs, data.data()); // true magnitude 2.0, frequency 5.0
LikelihoodGaussIsotropic likely(0.01, data);
// sample using uniform prior
SampleDREAM<logform>(num_burnup, num_chains,
posterior<logform>(grid, likely, uniform_prior),
grid.getDomainInside(),
state,
dist_gaussian, 0.1, const_percent<50>, get_rand);
//printMode(state, "mode");
std::vector<double> mode;
state.getApproximateMode(mode);
bool pass = ((mode[0] > 1.0) && (mode[0] < 3.0) && (mode[1] > 4.5) && (mode[1] < 5.5));
passAll = passAll && pass;
if (verbose || !pass) reportPassFail(pass, "Inference 2D", "grid frequency model");
reportPassFail(pass, "Inference 2D", "DREAM Bayesian grid model");
return passAll;
}
bool DreamExternalTester::testPosteriorDistributions(){
// Tests using posteriors constructed from model and prior distributions
bool pass1 = testCustomModel();
bool pass2 = testGridModel();
return pass1 && pass2;
}
bool DreamExternalTester::performTests(TypeDREAMTest test){
cout << endl << endl;
cout << "---------------------------------------------------------------------" << endl;
cout << " Tasmanian DREAM Module: Functionality Test" << endl;
cout << "---------------------------------------------------------------------" << endl << endl;
bool pass = true;
std::vector<int> results(10, 1); // results for all possible tests
if ((test == test_all) || (test == test_analytic)) results[0] = (testKnownDistributions()) ? 1 : 0;
if ((test == test_all) || (test == test_posterior)) results[1] = (testPosteriorDistributions()) ? 1 : 0;
if ((test == test_all) || (test == test_optimization)) results[2] = (testOptimization()) ? 1 : 0;
pass = std::all_of(results.begin(), results.end(), [&](int i)->bool{ return (i == 1); });
cout << endl;
if (pass){
cout << "---------------------------------------------------------------------" << endl;
cout << " All Tests Completed Successfully" << endl;
cout << "---------------------------------------------------------------------" << endl << endl;
}else{
cout << "FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL" << endl;
cout << " Some Tests Have Failed" << endl;
cout << "FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL" << endl << endl;
}
return pass;
}
void testDebug(){
cout << "Debug Test" << endl;
cout << "Put here testing code and call this with ./dreamtest debug" << endl;
}
#endif
|