1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
function [lGrid, points] = tsgMakeLocalPolynomial(sGridName, iDim, iOut, s1D, iDepth, iOrder, mTransformAB, sConformalMap, vConfromalWeights, vLimitLevels)
%
% [lGrid, points]
% tsgMakeLocalPolynomial(sGridName, iDim, iOut, s1D, iDepth, iOrder,
% mTransformAB, sConformalMap, vConfromalWeights,
% vLimitLevels)
%
% creates a new sparse grid using a sequence rule
%
% INPUT:
%
% sGridName: the name of the grid, give it a string name,
% i.e. 'myGrid' or '1' or 'pi314'
% DO NOT LEAVE THIS EMPTY
%
% iDim: (integer, positive)
% the number of inputs
%
% iOut: (integer, non-negative)
% the number of outputs
%
% s1D: (string for the underlying 1-D rule that induces the grid)
%
% 'localp' 'localp-zero' 'semi-localp' 'localp-boundary'
%
% iDepth: (integer non-negative)
% controls the density of the grid,
% i.e., the number of levels to use
%
%
% iOrder: (integer must be -1 or bigger)
% -1 indicates largest possible order
% 1 means linear, 2 means quadratic, etc.
%
% mTransformAB: (optional matrix of size iDim x 2)
% for all but gauss-laguerre and gauss-hermite grids, the
% transform specifies the lower and upper bound of the domain
% in each direction. For gauss-laguerre and gauss-hermite
% grids, the transform gives the a and b parameters that
% change the weight to
% exp(-b (x - a)) and exp(-b (x - a)^2)
%
% sConformalMap: (optional string giving the type of transform)
% conformal maps provide a non-linear domain transform,
% approximation (quadrature or interpolation) is done
% on the composition of f and the transform. A suitable
% transform could reduce the error by as much as an
% order of magnitude.
%
% 'asin': truncated MacLaurin series of arch-sin
%
% vConfromalWeights: (optional parameters for the conformal trnasform)
% 'asin': indicate the number of terms to keep after
% truncation
%
% vLimitLevels: (optional vector of integers of size iDim)
% limit the level in each direction, no points beyond the
% specified limit will be used, e.g., in 2D [1, 99] forces
% the grid to have at most 3 possible values in the first
% variable and ~2^99 (practicallyt infinite) number in the
% second direction. vLimitLevels works in conjunction with
% iDepth, for each direction, we chose the lesser of the
% vLimitLevels and iDepth
%
% OUTPUT:
%
% lGrid: list containing information about the sparse grid, can be used
% to call other functions
%
% points: (optional) the points of the grid in an array
% of dimension [num_poits, dim]
%
% [lGrid, points] =
% tsgMakeLocalPolynomial(sGridName, iDim, iOut, s1D, iDepth, iOrder,
% mTransformAB, sConformalMap, vConfromalWeights,
% vLimitLevels)
%
% create lGrid object
lGrid.sName = sGridName;
lGrid.sFilename = tsgMakeGridFilename(sGridName);
lGrid.iDim = iDim;
lGrid.iOut = iOut;
lGrid.sType = 'localpolynomial';
% check for conflict with tsgMakeQuadrature
if (strcmp(sGridName, ''))
error('sGridName cannot be empty');
end
% generate filenames
[sFiles, sTasGrid] = tsgGetPaths();
[sFileG, sFileX, sFileV, sFileO, sFileW, sFileC, sFileL] = tsgMakeFilenames(lGrid);
sCommand = [sTasGrid,' -makelocalpoly'];
sCommand = [sCommand, ' -gridfile ', sFileG];
sCommand = [sCommand, ' -dimensions ', num2str(lGrid.iDim)];
sCommand = [sCommand, ' -outputs ', num2str(lGrid.iOut)];
sCommand = [sCommand, ' -onedim ', s1D];
sCommand = [sCommand, ' -depth ', num2str(iDepth)];
sCommand = [sCommand, ' -order ', num2str(iOrder)];
% set the domain transformation
if (exist('mTransformAB') && (max(size(mTransformAB)) ~= 0))
if (size(mTransformAB, 2) ~= 2)
error(' mTransformAB must be a matrix with 2 columns');
end
if (size(mTransformAB, 1) ~= lGrid.iDim)
error(' mTransformAB must be a matrix with iDim number of rows');
end
tsgWriteMatrix(sFileV, mTransformAB);
lGlean.sFileV = 1;
sCommand = [sCommand, ' -tf ',sFileV];
end
% set conformal mapping
if (exist('sConformalMap') && (max(size(sConformalMap)) ~= 0))
if (~exist('vConfromalWeights'))
error(' sConformalMap requires vConfromalWeights')
end
sCommand = [sCommand, ' -conformaltype ', sConformalMap];
if (size(vConfromalWeights, 1) > size(vConfromalWeights, 2))
tsgWriteMatrix(sFileC, vConfromalWeights');
else
tsgWriteMatrix(sFileC, vConfromalWeights);
end
lClean.sFileC = 1;
sCommand = [sCommand, ' -conformalfile ',sFileC];
end
% set level limits
if (exist('vLimitLevels') && (max(size(vLimitLevels)) ~= 0))
if (min(size(vLimitLevels)) ~= 1)
error(' vLimitLevels must be a vector, i.e., one row or one column');
end
if (max(size(vLimitLevels)) ~= lGrid.iDim)
error(' vLimitLevels must be a vector of size iDim');
end
if (size(vLimitLevels, 1) > size(vLimitLevels, 2))
tsgWriteMatrix(sFileL, vLimitLevels');
else
tsgWriteMatrix(sFileL, vLimitLevels);
end
lClean.sFileL = 1;
sCommand = [sCommand, ' -levellimitsfile ', sFileL];
end
% read the points for the grid
if (nargout > 1)
sCommand = [sCommand, ' -of ',sFileO];
lGlean.sFileO = 1;
end
[status, cmdout] = system(sCommand);
if (max(size(strfind(cmdout, 'ERROR'))) ~= 0)
disp(cmdout);
error('The tasgrid execurable returned an error, see above');
return;
else
if (~isempty(cmdout))
fprintf(1,['WARNING: Command had non-empty output:\n']);
disp(cmdout);
end
if (nargout > 1)
points = tsgReadMatrix(sFileO);
end
end
if (exist('lClean'))
tsgCleanTempFiles(lGrid, lClean);
end
end
|