1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
##############################################################################################################################################################################
# Copyright (c) 2017, Miroslav Stoyanov
#
# This file is part of
# Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
#
# Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
# and the following disclaimer in the documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
# or promote products derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
# INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
# IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
# OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED.
# THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,
# COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.
# THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,
# IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
##############################################################################################################################################################################
from ctypes import c_char_p, c_int, c_double, c_void_p, POINTER, CDLL, create_string_buffer, RTLD_GLOBAL
import numpy as np
import sys
from TasmanianConfig import __path_libdream__
from TasmanianConfig import TasmanianInputError as InputError
pLibDTSG = CDLL(__path_libdream__, mode = RTLD_GLOBAL)
pLibDTSG.tsgGetNumOutputsLikelihood.restype = c_int
pLibDTSG.tsgDeleteLikelihood.argtypes = [c_void_p]
pLibDTSG.tsgGetNumOutputsLikelihood.argtypes = [c_void_p]
pLibDTSG.tsgGetLikelihood.argtypes = [c_void_p, c_int, POINTER(c_double), c_int, POINTER(c_double)]
pLibDTSG.tsgMakeLikelihoodGaussIsotropic.restype = c_void_p
pLibDTSG.tsgMakeLikelihoodGaussIsotropic.argtypes = [c_int, c_double, POINTER(c_double), c_int]
pLibDTSG.tsgMakeLikelihoodGaussAnisotropic.restype = c_void_p
pLibDTSG.tsgMakeLikelihoodGaussAnisotropic.argtypes = [c_int, POINTER(c_double), POINTER(c_double), c_int]
typeRegform = 0
typeLogform = 1
class TasmanianLikelihood(object):
'''
Generic wrapper to TasDREAM::TasmanianLikelihood derived class.
'''
def __init__(self):
'''
The derived classes will have a member pClassPntr, init to nullptr here.
'''
self.TasmanianLikelihood = True
self.pClassPntr = c_void_p(None)
def __del__(self):
'''
Delete the grid on exit
'''
if self.pClassPntr:
pLibDTSG.tsgDeleteLikelihood(self.pClassPntr)
def getNumOutputs(self):
'''
Returns the number of outputs set in the likelihood.
'''
return pLibDTSG.tsgGetNumOutputs(self.pClassPntr)
def getLikelihood(self, typeForm, llfModel):
'''
Returns the likelihood for the model outputs.
typeForm: indicates to use the regular or log-form
use DREAM.typeRegform or DREAM.typeLogform
llfModel: is a two dimensional numpy.ndarray with
.shape[0] > 0
.shape[1] == getNumOutputs()
Returns a one dimensional ndarray with size .shape[0]
'''
iNumSamples = llfModel.shape[0]
iNumOutputs = llfModel.shape[1]
aResult = np.empty((iNumSamples,), np.float64)
pLibDTSG.tsgGetLikelihood(self.pClassPntr, typeForm,
np.ctypeslib.as_ctypes(llfModel.reshape((iNumSamples*iNumOutputs,))),
iNumSamples, np.ctypeslib.as_ctypes(aResult))
return aResult
class LikelihoodGaussIsotropic(TasmanianLikelihood):
'''
Wrapper around TasDREAM::LikelihoodGaussIsotropic
'''
def __init__(self, fVariance, lfData, iNumSamples = 1):
'''
Make a new likelihood with the given data.
fVariance: float64 is the variance
lfData: one dimensional ndarray with the data
iNumSamples: number of samples used for the data
'''
super(LikelihoodGaussIsotropic, self).__init__()
iNumOutputs = len(lfData)
self.pClassPntr = pLibDTSG.tsgMakeLikelihoodGaussIsotropic(
iNumOutputs, fVariance, np.ctypeslib.as_ctypes(lfData), iNumSamples)
class LikelihoodGaussAnisotropic(TasmanianLikelihood):
'''
Wrapper around TasDREAM::LikelihoodGaussIsotropic
'''
def __init__(self, lfVariance, lfData, iNumSamples = 1):
'''
Make a new likelihood with the given data.
lfVariance: one dimensional ndarray with the data variance
lfData: one dimensional ndarray with the data
iNumSamples: number of samples used for the data
'''
super(LikelihoodGaussAnisotropic, self).__init__()
if (len(lfVariance) != len(lfData)):
raise InputError("lfVariance", "Mismatch in size of variance and data vectors.")
iNumOutputs = len(lfData)
self.pClassPntr = pLibDTSG.tsgMakeLikelihoodGaussAnisotropic(
iNumOutputs, np.ctypeslib.as_ctypes(lfVariance), np.ctypeslib.as_ctypes(lfData), iNumSamples)
|