1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
|
##############################################################################################################################################################################
# Copyright (c) 2017, Miroslav Stoyanov
#
# This file is part of
# Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
#
# Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
# and the following disclaimer in the documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
# or promote products derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
# INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
# IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
# OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED.
# THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,
# COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.
# THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,
# IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
##############################################################################################################################################################################
from ctypes import c_char_p, c_int, c_double, c_void_p, POINTER, CDLL, CFUNCTYPE, RTLD_GLOBAL
import numpy as np
import sys
from TasmanianConfig import __path_libdream__
from TasmanianConfig import enableVerboseErrors
from TasmanianConfig import TasmanianInputError as InputError
from TasmanianSG import TasmanianSparseGrid as SparseGrid
from TasmanianDreamLikely import *
from TasmanianDreamState import DreamState as State
type_dream_pdf = CFUNCTYPE(None, c_int, c_int, POINTER(c_double), POINTER(c_double), POINTER(c_int))
type_dream_domain = CFUNCTYPE(c_int, c_int, POINTER(c_double))
type_dream_iupdate = CFUNCTYPE(None, c_int, POINTER(c_double), POINTER(c_int))
type_dream_dupdate = CFUNCTYPE(c_double)
type_dream_random = CFUNCTYPE(c_double)
pLibDTSG = CDLL(__path_libdream__, mode = RTLD_GLOBAL)
pLibDTSG.tsgGenUniformSamples.argtypes = [c_int, c_int, POINTER(c_double), POINTER(c_double), c_char_p, c_int, type_dream_random, POINTER(c_double)]
pLibDTSG.tsgGenGaussianSamples.argtypes = [c_int, c_int, POINTER(c_double), POINTER(c_double), c_char_p, c_int, type_dream_random, POINTER(c_double)]
pLibDTSG.tsgDreamSample.argtypes = [c_int, c_int, c_int,
type_dream_pdf, c_void_p,
c_void_p, POINTER(c_double), POINTER(c_double), type_dream_domain,
c_char_p, c_double, type_dream_iupdate,
c_int, type_dream_dupdate,
c_char_p, c_int, type_dream_random, POINTER(c_int)]
def pdfWrapper(callableProbability, iNumSamples, iNumDims, pX, pY, pErrInfo):
'''
Internal use only.
Wraps around a user-provided callable method callableProbability
to facilitate callback from the C/C++ code.
The wrapper corresponds to a single output pdf/likelihood method.
iNumSamples is the number of samples to process for this call.
iNumDims is the number of dimensions of each sample vector
pX is a POINTER(double) with size iNumSamples * iNumDims
pY is a POINTER(double) with size iNumSamples
'''
pErrInfo[0] = 1
aX = np.ctypeslib.as_array(pX, (iNumSamples, iNumDims))
aY = np.ctypeslib.as_array(pY, (iNumSamples,))
aResult = callableProbability(aX)
if aResult.shape != (iNumSamples,) and enableVerboseErrors:
print("ERROR: incorrect output from the probability distribution, should be (iNumSamples,)")
return
aY[0:iNumSamples] = aResult[0:iNumSamples]
pErrInfo[0] = 0
def domainWrapper(callableDomain, iNumDims, pX):
'''
Internal use only.
Wraps around a user-provided callable method callableDomain
to facilitate callback from the C/C++ code.
The wrapper corresponds to the test of a single point.
iNumDims is the dimensions of the point
pX is a POINTER(double) with size iNumDims
returns 1 if callableDomain() returns true and 0 otherwise.
'''
aX = np.ctypeslib.as_array(pX, (iNumDims,))
if callableDomain(aX):
return 1;
else:
return 0
def iupdateWrapper(callableIUpdate, iNumDims, pX, pErrInfo):
'''
Internal use only.
Wraps around a user-provided callable method callableIUpdate
to facilitate callback from the C/C++ code.
The wrapper corresponds to the independent update of a single point.
iNumDims is the dimensions of the point
pX is a POINTER(double) with size iNumDims
pX will be overwritten with pX + update
'''
pErrInfo[0] = 1
aX = np.ctypeslib.as_array(pX, (iNumDims,))
aResult = callableIUpdate()
if aResult.shape != (iNumDims,) and enableVerboseErrors:
print("ERROR: incorrect output from the independent update, should be (iNumDimensions,)")
return
aX[0:iNumDims] = aResult[0:iNumDims]
pErrInfo[0] = 0
class Domain(object):
'''
Domain objects specify the domain of sampling and is used to test
each candidate sample. The objects roughly correspond to the inside()
parameter given to TasDREAM::SampleDREAM() but with extra flexibility
to reduce the cost of C++ to Python callbacks.
The domain can be specified in one of the following ways:
1) Domain(grid)
The grid is an instance of Tasmanian.SparseGrid() and the domain
will match the domain of the sparse grid. The grid domain is usually
a hypercube with lower and upper limit, but in some cases, e.g.,
using gauss-hermite and gauss-laguerre rules, the domain can be
unbounded in some directions.
2) Domain("hypercube", aLower, aUpper)
The domain will be set to a hypercube, similar to TasDREAM::hypercube().
The aLower and aUpper must be one dimensional numpy.ndarrays with
size equal to the dimensions of the domain and the corresponding
values must specify the lower and upper limit in each direction.
3) Domain("unbounded")
Samples will be accepted and rejected only based on the probability
density, i.e., the sampling domain includes all real valued vectors.
4) Domain("custom", inside)
The inside parameter must be a callable object that accepts an single
numpy.ndarray with size equal to the number of dimensions, and must
return True or False depending on whether the vector is inside
the domain.
'''
def __init__(self, sType, *args):
'''
Constructor that translates the input arguments into inputs
to the internal Tasmanian API.
See help(Tasmanian.DREAM.Domain)
'''
self.TasmanianDreamDomain = True
if hasattr(sType, "TasmanianSparseGridObject"):
self.pGrid = sType.pGrid
self.pLower = None
self.pUpper = None
self.pCallable = type_dream_domain(lambda : 1)
elif sType == "hypercube":
self.pGrid = None
self.pLower = np.ctypeslib.as_ctypes(args[0])
self.pUpper = np.ctypeslib.as_ctypes(args[1])
self.pCallable = type_dream_domain(lambda : 1)
elif sType == "unbounded":
self.pGrid = None
self.pLower = None
self.pUpper = None
self.pCallable = type_dream_domain(lambda n, x : domainWrapper(lambda x: True, n, x))
elif sType == "custom":
self.pGrid = None
self.pLower = None
self.pUpper = None
self.pCallable = type_dream_domain(lambda n, x : domainWrapper(args[0], n, x))
else:
raise InputError("Domain", "DREAM.Domain() was given an unknown domain type")
class IndependentUpdate(object):
'''
Each step of the DREAM procedure uses two updates to generate new proposed
vectors for each chain. The independent update is a zero-mean random vector
pulled from a distribution that does not depend on the other DREAM chains.
Thus is the Python equivalent to the independent_update() parameter
to TasDREAM::SampleDREAM().
The independent update can be specified in one of the following ways:
1) IndependentUpdate(sType, fMagnitude)
The sType is a string and fMagnitude is a float64 corresponding to the
dist and magnitude of the TasDREAM::SampleDREAM() overload.
The sType must be either "gaussian" or "uniform".
Note that the magnitude can be zero.
2) IndependentUpdate(iupdate)
The iupdate must be a callable object that accepts a numpy.ndarray
with length equal to the sampling dimension and returns same vector
but perturbed with the update, e.g., lambda x : x + update().
'''
def __init__(self, sType, callableOrMagnitude = 0.0):
'''
Constructor that translates the input arguments into inputs
to the internal Tasmanian API.
See help(Tasmanian.DREAM.IndependentUpdate)
'''
self.TasmanianDreamIndependentUpdate = True
if not ((sys.version_info.major == 3 and isinstance(sType, str))
or (sys.version_info.major == 2 and isinstance(sType, basestring))):
if not callable(sType):
raise InputError("sType", "DREAM.IndependentUpdate() the sType must be either a string or a callable object")
self.sType = "null"
self.fMagnitude = 0.0
self.pCallable = type_dream_iupdate(lambda n, x, err : iupdateWrapper(sType, n, x, err))
else:
self.sType = sType
self.fMagnitude = callableOrMagnitude
self.pCallable = type_dream_iupdate(lambda : 1)
if (sys.version_info.major == 3):
self.sType = bytes(self.sType, encoding='utf8')
class DifferentialUpdate(object):
'''
Each step of the DREAM procedure uses two updates to generate new proposed
vectors for each chain. The differential update is defined as a scale
multiplied by the difference between two of the DREAM chains.
This class sets the scale, i.e., the magnitude of the differential update.
Thus is the Python equivalent to the differential_update() parameter
to TasDREAM::SampleDREAM().
The differential update can be specified in one of the following ways:
1) DifferentialUpdate(iMagnitude)
The iMagnitude is an integer that defines the percent scale of the
differential update, i.e., the update is float(iMagnitude) / 100.0
This is equivalent to using TasDREAM::const_percent<iMagnitude>
in the C++ call to TasDREAM::SampleDREAM().
2) DifferentialUpdate(dupdate)
The dupdate must be a callable object that accepts no inputs
and returns a float64 indicating the magnitude.
Note: by symmetry, positive and negative scales with the same magnitude
are statistically equivalent.
'''
def __init__(self, callableOrMagnitude):
'''
Constructor that translates the input arguments into inputs
to the internal Tasmanian API.
See help(Tasmanian.DREAM.DifferentialUpdate)
'''
self.TasmanianDreamDifferentialUpdate = True
if (((sys.version_info.major == 3) and isinstance(callableOrMagnitude, int))
or ((sys.version_info.major == 2) and isinstance(callableOrMagnitude, (int, long)))):
self.iPercent = callableOrMagnitude
self.pCallable = type_dream_dupdate(lambda : 1)
else:
if not callable(callableOrMagnitude):
raise InputError("callableOrMagnitude", "DREAM.DifferentialUpdate() the callableOrMagnitude must be either an integer or a callable object")
self.iPercent = -1
self.pCallable = type_dream_dupdate(callableOrMagnitude)
class RandomGenerator(object):
'''
A class that helps specify the random number generator to be used on the
C++ side of the call to TasDREAM::SampleDREAM().
The random number engine can be defined in one of several ways:
1) RandomGenerator("default") or just RandomGenerator()
The C++ code will use the rand() command with seed initialized from
the system time.
2) RandomGenerator("minstd_rand")
The rand() command in C++ is implementation dependent, i.e., the random
number may be different between compilers even if the same seed is used.
The std::minstd_rand generator is defined in the standard and the output
is implementation independent, which makes it a good option for
testing and debugging (probably not very good for actual applications).
The random seed used here will still be taken from the system time.
3) RandomGenerator("minstd_rand", iSeed)
In addition to the standard std::minstd_rand engine this also specifies
the seed.
4) RandomGenerator(callableRNG = random01)
The random01 parameter must be a callable object that returns random
numbers distributed uniformly in (0, 1), e.g.,
from random import uniform
RandomGenerator(callableRNG = lambda : uniform(0.0, 1.0))
'''
def __init__(self, sType = "default", iSeed = -1, callableRNG = lambda : 1):
'''
Constructor that translates the input arguments into inputs
to the internal Tasmanian API.
See help(Tasmanian.DREAM.RandomGenerator)
'''
if sType not in ["default", "minstd_rand"]:
raise InputError("sType", "DREAM.RandomGenerator() the sType is invalid")
if not callable(callableRNG):
raise InputError("callableRNG", "DREAM.RandomGenerator() the callableRNG must be a callable object")
self.TasmanianDreamRandomGenerator = True
self.sType = sType
if (sys.version_info.major == 3):
self.sType = bytes(self.sType, encoding='utf8')
self.iSeed = iSeed
self.pCallable = type_dream_random(callableRNG)
typePriorCallable = 0 # internal API, the values are synchronized with the C/C++ code
typePriorUniform = 1
class Posterior(object):
'''
A class that helps combine the components of a Bayesian posterior into
a single callable object. Strictly speaking, this is a factory class that
generates probability distribution callable objects used in DREAM.Sample().
The intended use of the class is embedded as in the C++ function
TasDREAM::posterior().
The probability distribution takes a two dimensional numpy.ndarray
object with shape (num_samples, num_dimensions) and returns a one
dimensional numpy.ndarray with length (num_samples,).
Each entry of the result corresponds to the (unscaled) probability
density at the corresponding vector.
The usage of this class is:
DREAM.Sample(..., Posterior(model, likelihood, prior), ...)
or if log-form sampling is to be used:
DREAM.Sample(..., Posterior(model, likelihood, prior, typeForm), ...)
Combining the three components gives us:
result = likelihood(typeForm, model(x)) * prior(x)
of if using typeLogform:
result = likelihood(typeForm, model(x)) + prior(x)
The model, likelihood, and prior, can be callable objects so that
model: input.shape = (num_samples, num_dimensions)
output.shape = (num_samples, num_outputs)
likelihood: input.shape = (num_samples, num_outputs)
output.shape = (num_samples,)
prior: input.shape = (num_samples, num_dimensions)
output.shape = (num_samples,)
In addition:
model: can be an instance of Tasmanian.SparseGrid()
likelihood: can be an instance of DREAM.LikelihoodGaussIsotropic()
of LikelihoodGaussAnisotropic().
prior: can be the string "uniform"
The typeForm must be either typeRegform (default) or typeLogform
and must be synchronized with the form used in DREAM.Sample().
The likelihood need only implement the form used in DREAM.Sample().
The form here indicates whether to add or multiply by the log of
the values of the prior.
'''
def __init__(self, model, likelihood, prior, typeForm = typeRegform):
'''
Constructor that translates the input arguments into inputs
to the internal Tasmanian API.
See help(Tasmanian.DREAM.Posterior)
'''
self.TasmanianPosterior = True
self.typeForm = typeForm
if self.typeForm not in [typeRegform, typeLogform]:
raise InputError("typeForm", "unknown sampling form, must use typeRegform or typeLogform")
self.model = model
if hasattr(self.model, "TasmanianSparseGridObject"):
self.bUseSparsegrid = True
elif callable(self.model):
self.bUseSparsegrid = False
else:
raise InputError("model", "model should be either an instance of Tasmanian.SparseGrid() or a callable object.")
self.likelihood = likelihood
if hasattr(self.likelihood, "TasmanianLikelihood"):
self.bUseTasLikely = True
elif callable(self.likelihood):
self.bUseTasLikely = False
else:
raise InputError("likelihood", "likelihood should be either derived from TasmanianLikelihood() or a callable object.")
if prior == "uniform":
self.typePrior = typePriorUniform
elif callable(prior):
self.typePrior = typePriorCallable
self.prior = prior
else:
raise InputError("prior", "prior should be either 'uniform' or a callable object.")
def doModel(self, aX):
'''
Internal API, applies the model part of the posterior.
'''
if self.bUseSparsegrid:
return self.model.evaluateBatch(aX)
else:
return self.model(aX)
def doLikelihood(self, aModelValues):
'''
Internal API, applies the likelihood part of the posterior.
'''
if self.bUseTasLikely:
return self.likelihood.getLikelihood(self.typeForm, aModelValues)
else:
return self.likelihood(self.typeForm, aModelValues)
def doPrior(self, aLikely, aX):
'''
Internal API, computes the prior part of the posterior.
'''
if self.typePrior == typePriorUniform:
aResult = aLikely
else:
# reg-form multiplies, log-form adds
if self.typeForm == typeRegform:
aResult = aLikely * self.prior(aX)
else:
aResult = aLikely + self.prior(aX)
return aResult
def distribution(self):
'''
Internal API, combines the input objects into a single lambda.
'''
return lambda x : self.doPrior(self.doLikelihood(self.doModel(x)), x).reshape((x.shape[0],))
def PosteriorEmbeddedLikelihood(model, prior, typeForm = typeRegform):
'''
Shortcut to Tasmanian.DREAM.Posterior() when the model and the likelihood
are combined into a single object (callable or sparse grid).
The prior and typeForm are the same.
'''
return Posterior(model, lambda t, x : x, prior, typeForm)
def genUniformSamples(lfLower, lfUpper, iNumSamples, random01 = RandomGenerator(sType = "default")):
'''
Wrapper around TasDREAM::genUniformSamples()
Using the one dimensional numpy.ndarrays lfLower and lfUpper,
which describe the upper and lower bounds of a hypercube,
generate iNumSamples from a uniform distribution using
the random01 engine.
The lengths of lfLower and lfUpper must match.
Returns a two dimensional numpy.ndarray of shape = (iNumSamples, len(lfLower)),
'''
if len(lfLower) != len(lfUpper):
raise InputError("lfUpper", "The length of lfLower and lfUpper do not match.")
aLower = np.array(lfLower)
aUpper = np.array(lfUpper)
iNumDims = len(lfLower)
aResult = np.empty((iNumDims * iNumSamples,), np.float64)
pLibDTSG.tsgGenUniformSamples(iNumDims, iNumSamples, np.ctypeslib.as_ctypes(aLower), np.ctypeslib.as_ctypes(aUpper),
c_char_p(random01.sType), random01.iSeed, random01.pCallable,
np.ctypeslib.as_ctypes(aResult))
return aResult.reshape((iNumSamples, iNumDims))
def genGaussianSamples(lfMean, lfDeviation, iNumSamples, random01 = RandomGenerator(sType = "default")):
'''
Wrapper around TasDREAM::tsgGenGaussianSamples()
Using the one dimensional numpy.ndarrays lfMean and lfVariance,
which describe the mean and standard deviation of a Gaussian distribution,
generate iNumSamples from a normal (Gaussian) distribution using
the random01 engine.
The lengths of lfMean and lfDeviation must match.
Returns a two dimensional numpy.ndarray of shape = (iNumSamples, len(lfLower)),
'''
if len(lfMean) != len(lfDeviation):
raise InputError("lfDeviation", "The length of lfMean and lfDeviation do not match.")
aMean = np.array(lfMean)
aDeviation = np.array(lfDeviation)
iNumDims = len(lfMean)
aResult = np.empty((iNumDims * iNumSamples,), np.float64)
pLibDTSG.tsgGenGaussianSamples(iNumDims, iNumSamples, np.ctypeslib.as_ctypes(aMean), np.ctypeslib.as_ctypes(aDeviation),
c_char_p(random01.sType), random01.iSeed, random01.pCallable,
np.ctypeslib.as_ctypes(aResult))
return aResult.reshape((iNumSamples, iNumDims))
def Sample(iNumBurnup, iNumCollect,
probability_distibution, domain_description, dream_state,
independent_update = IndependentUpdate("none"),
differential_update = DifferentialUpdate(100),
random01 = RandomGenerator(sType = "default"),
typeForm = typeRegform):
'''
Wrapper to TasDREAM::SampleDREAM().
The Markov Chain Monte Carlo algorithms generate chains of samples
with distribution that converges to the target probability density.
The current state of the chains (i.e., the last vector) is updated by
first generating a set of proposals and then accepting/rejecting randomly
but with the constraint that the only accepted vectors belong to the
specified domain. The proposals are constructed from two components,
the independent component that is iid random with zero mean and
the differential component that is takes from the scaled difference
between the state of two randomly selected chains.
iNumBurnup: is a non-negative integer that indicates the number of
iterations to discard, i.e., samples that have no statistical
significance because the chain state has not converged to
the target probability distribution.
iNumCollect: is a non-negative integer that indicates the number of
iterations to store in the state history.
probability_distibution: is either an instance of DREAM.Posterior() or
a callable object that accepts a two dimensional numpy.ndarray
and then returns a one dimensional numpy.ndarray.
See help(Tasmanian.DREAM.Posterior)
Can also use a lambda to capture a Tasmanian sparse grid, i.e.,
lambda x : grid.evaluateBatch(x).reshape((x.shape[0],))
domain_description: is an instance of DREAM.Domain()
See help(Tasmanian.DREAM.Domain)
dream_state: is an instance of DREAM.State() with number of dimensions
that match the dimensions used by the probability_distibution.
See help(Tasmanian.DREAM.State)
On input the state chains have to be initialized, on output
the history will be populated with the iNumCollect samples.
(if the history is not empty, the new samples will be appended)
independent_update: is an instance of DREAM.IndependentUpdate()
See help(Tasmanian.DREAM.IndependentUpdate)
differential_update: is an instance of DREAM.DifferentialUpdate()
See help(Tasmanian.DREAM.DifferentialUpdate)
random01: is an instance of DREAM.RandomGenerator()
See help(Tasmanian.DREAM.RandomGenerator)
typeForm: is either DREAM.typeRegform or DREAM.typeLogform
The form modifies the accept/reject criteria based on whether
the probability_distibution returns the actual distribution
of interest or the logarithm of that (which is sometimes more
stable and/or easier to approximate with a sparse grid).
Note: the typeForm must match the return of the probability_distibution.
'''
if not hasattr(domain_description, "TasmanianDreamDomain"):
raise InputError("domain_description", "domain_description must be an instance of DREAM.Domain()")
if not hasattr(dream_state, "TasmanainDreamState"):
raise InputError("dream_state", "dream_state must be an instance of DREAM.State()")
if not hasattr(independent_update, "TasmanianDreamIndependentUpdate"):
raise InputError("independent_update", "independent_update must be an instance of DREAM.IndependentUpdate()")
if not hasattr(differential_update, "TasmanianDreamDifferentialUpdate"):
raise InputError("differential_update", "differential_update must be an instance of DREAM.DifferentialUpdate()")
if not hasattr(random01, "TasmanianDreamRandomGenerator"):
raise InputError("random01", "random01 must be an instance of DREAM.RandomGenerator()")
if typeForm not in [typeRegform, typeLogform]:
raise InputError("typeForm", "unknown sampling form, must use typeRegform or typeLogform")
pErrorCode = (c_int * 1)()
if hasattr(probability_distibution, "TasmanianPosterior"):
pLibDTSG.tsgDreamSample(typeForm, c_int(iNumBurnup), c_int(iNumCollect),
type_dream_pdf(lambda m, n, x, y, err : pdfWrapper(probability_distibution.distribution(), m, n, x, y, err)),
dream_state.pStatePntr,
domain_description.pGrid, domain_description.pLower, domain_description.pUpper, domain_description.pCallable,
c_char_p(independent_update.sType), independent_update.fMagnitude, independent_update.pCallable,
differential_update.iPercent, differential_update.pCallable,
c_char_p(random01.sType),
random01.iSeed,
random01.pCallable,
pErrorCode)
elif callable(probability_distibution):
pLibDTSG.tsgDreamSample(typeForm, c_int(iNumBurnup), c_int(iNumCollect),
type_dream_pdf(lambda m, n, x, y, err : pdfWrapper(probability_distibution, m, n, x, y, err)), dream_state.pStatePntr,
domain_description.pGrid, domain_description.pLower, domain_description.pUpper, domain_description.pCallable,
c_char_p(independent_update.sType), independent_update.fMagnitude, independent_update.pCallable,
differential_update.iPercent, differential_update.pCallable,
c_char_p(random01.sType),
random01.iSeed,
random01.pCallable,
pErrorCode)
else:
raise InputError("probability_distibution", "probability_distibution must be a callable object that takes a 2D numpy.ndarray and returns a 1D ndarray")
if pErrorCode[0] != 0:
raise InputError("Sample", "An error occurred during the call to Tasmanian.")
|