1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
##############################################################################################################################################################################
# Copyright (c) 2017, Miroslav Stoyanov
#
# This file is part of
# Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
#
# Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
# and the following disclaimer in the documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
# or promote products derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
# INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
# IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
# OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED.
# THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,
# COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.
# THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,
# IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
##############################################################################################################################################################################
from ctypes import c_char_p, c_int, c_double, c_void_p, POINTER, CDLL, create_string_buffer, RTLD_GLOBAL
import numpy as np
import sys
from TasmanianConfig import __path_libdream__
from TasmanianConfig import TasmanianInputError as InputError
from TasmanianSG import TasmanianSparseGrid as SparseGrid
pLibDTSG = CDLL(__path_libdream__, mode = RTLD_GLOBAL)
pLibDTSG.tsgMakeDreamState.restype = c_void_p
pLibDTSG.tsgMakeDreamState.argtypes = [c_int, c_int]
pLibDTSG.tsgDeleteDreamState.argtypes = [c_void_p]
pLibDTSG.tsgDreamStateGetDims.restype = c_int
pLibDTSG.tsgDreamStateGetDims.argtypes = [c_void_p]
pLibDTSG.tsgDreamStateGetChains.restype = c_int
pLibDTSG.tsgDreamStateGetChains.argtypes = [c_void_p]
pLibDTSG.tsgDreamStateGetNumHistory.restype = c_int
pLibDTSG.tsgDreamStateGetNumHistory.argtypes = [c_void_p]
pLibDTSG.tsgDreamStateSet.argtypes = [c_void_p, POINTER(c_double)]
pLibDTSG.tsgDreamStateGetHistory.argtypes = [c_void_p, POINTER(c_double)]
pLibDTSG.tsgDreamStateGetHistoryPDF.argtypes = [c_void_p, POINTER(c_double)]
pLibDTSG.tsgDreamStateGetMeanVar.argtypes = [c_void_p, POINTER(c_double), POINTER(c_double)]
pLibDTSG.tsgDreamStateGetMode.argtypes = [c_void_p, POINTER(c_double)]
pLibDTSG.tsgDreamStateGetRate.restype = c_double
pLibDTSG.tsgDreamStateGetRate.argtypes = [c_void_p]
class DreamState:
'''
Wrapper to class TasDREAM::TasmanianDREAM
'''
def __init__(self, iNumChains, GridOrIntDimensions):
'''
Constructs a new state with given number of chains and dimensions.
The dimensions can be given as an integer or inferred from
a Tasmanian.SparseGrid object.
iNumChains: positive integer indicating the number of chains.
GridOrIntDimensions: either a positive integer or a non-empty
Tasmanian.SparseGrid object that gives the dimensions
'''
self.TasmanainDreamState = True
if (isinstance(GridOrIntDimensions, SparseGrid)):
self.pStatePntr = pLibDTSG.tsgMakeDreamState(iNumChains, GridOrIntDimensions.getNumDimensions())
else:
self.pStatePntr = pLibDTSG.tsgMakeDreamState(iNumChains, GridOrIntDimensions)
def __del__(self):
'''
Deletes an instance of the DREAM state.
'''
pLibDTSG.tsgDeleteDreamState(self.pStatePntr)
def getNumDimensions(self):
'''
Return the number of dimensions.
'''
return pLibDTSG.tsgDreamStateGetDims(self.pStatePntr)
def getNumChains(self):
'''
Return the number of chains.
'''
return pLibDTSG.tsgDreamStateGetChains(self.pStatePntr)
def getNumHistory(self):
'''
Return the number of samples saved in the history.
'''
return pLibDTSG.tsgDreamStateGetNumHistory(self.pStatePntr)
def setState(self, llfNewState):
'''
Set a new state for the DREAM chains.
llfNewState: is a two dimensional numpy.ndarray with
.shape[0] = .getNumChains()
.shape[1] = .getNumDimensions()
'''
iNumChains = self.getNumChains()
iNumDims = self.getNumDimensions()
if (llfNewState.shape[0] != iNumChains):
raise InputError("llfNewState", "llfNewState.shape[0] should match the number of chains")
if (llfNewState.shape[1] != iNumDims):
raise InputError("llfNewState", "llfNewState.shape[1] should match the number of dimensions")
pLibDTSG.tsgDreamStateSet(self.pStatePntr,
np.ctypeslib.as_ctypes(llfNewState.reshape((iNumChains * iNumDims,))))
def getHistory(self):
'''
Returns the saved history in a two dimensional numpy.ndarray
'''
iNumDims = self.getNumDimensions()
iNumHistory = self.getNumHistory()
aResult = np.empty((iNumDims * iNumHistory,), np.float64)
pLibDTSG.tsgDreamStateGetHistory(self.pStatePntr, np.ctypeslib.as_ctypes(aResult))
return aResult.reshape((iNumHistory, iNumDims))
def getHistoryPDF(self):
'''
Returns the saved pdf in a one dimensional numpy.ndarray
'''
iNumHistory = self.getNumHistory()
aResult = np.empty((NumHistory,), np.float64)
pLibDTSG.tsgDreamStateGetHistoryPDF(self.pStatePntr, np.ctypeslib.as_ctypes(aResult))
return aResult
def getHistoryMeanVariance(self):
'''
Returns two one dimensional numpy.ndarrays corresponding
to the mean and variance of the history.
'''
iNumDims = self.getNumDimensions()
aMean = np.empty((iNumDims,))
aVar = np.empty((iNumDims,))
pLibDTSG.tsgDreamStateGetMeanVar(self.pStatePntr,
np.ctypeslib.as_ctypes(aMean),
np.ctypeslib.as_ctypes(aVar))
return aMean, aVar
def getApproximateMode(self):
'''
Returns the approximate mode, i.e., the sample with highest probability density.
'''
iNumDims = self.getNumDimensions()
aMode = np.empty((iNumDims,))
pLibDTSG.tsgDreamStateGetMode(self.pStatePntr, np.ctypeslib.as_ctypes(aMode))
return aMode
def getAcceptanceRate(self):
'''
Return the acceptance rate accumulated with the history.
'''
return pLibDTSG.tsgDreamStateGetRate(self.pStatePntr)
|